At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find [tex]\(\sin \theta\)[/tex] given that [tex]\(\cos \theta = \frac{15}{17}\)[/tex], we can use the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Given [tex]\(\cos \theta = \frac{15}{17}\)[/tex], let's denote this value for clarity:
[tex]\[ \cos \theta = \frac{15}{17} \][/tex]
First, let's square [tex]\(\cos \theta\)[/tex]:
[tex]\[ \cos^2 \theta = \left(\frac{15}{17}\right)^2 = \frac{225}{289} \][/tex]
Next, substitute [tex]\(\cos^2 \theta\)[/tex] into the Pythagorean identity:
[tex]\[ \sin^2 \theta + \frac{225}{289} = 1 \][/tex]
Now, solve for [tex]\(\sin^2 \theta\)[/tex]:
[tex]\[ \sin^2 \theta = 1 - \frac{225}{289} \][/tex]
To proceed, we need to subtract [tex]\(\frac{225}{289}\)[/tex] from 1. We can convert 1 to a fraction with the same denominator:
[tex]\[ 1 = \frac{289}{289} \][/tex]
Thus:
[tex]\[ \sin^2 \theta = \frac{289}{289} - \frac{225}{289} = \frac{64}{289} \][/tex]
Now, taking the square root of both sides to find [tex]\(\sin \theta\)[/tex]:
[tex]\[ \sin \theta = \sqrt{\frac{64}{289}} = \frac{\sqrt{64}}{\sqrt{289}} = \frac{8}{17} \][/tex]
Given that [tex]\(\cos \theta\)[/tex] is positive and considering standard trigonometric functions in different quadrants, [tex]\(\sin \theta\)[/tex] should also be positive in this case.
Therefore, the value of [tex]\(\sin \theta\)[/tex] is:
[tex]\[ \boxed{\frac{8}{17}} \][/tex]
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Given [tex]\(\cos \theta = \frac{15}{17}\)[/tex], let's denote this value for clarity:
[tex]\[ \cos \theta = \frac{15}{17} \][/tex]
First, let's square [tex]\(\cos \theta\)[/tex]:
[tex]\[ \cos^2 \theta = \left(\frac{15}{17}\right)^2 = \frac{225}{289} \][/tex]
Next, substitute [tex]\(\cos^2 \theta\)[/tex] into the Pythagorean identity:
[tex]\[ \sin^2 \theta + \frac{225}{289} = 1 \][/tex]
Now, solve for [tex]\(\sin^2 \theta\)[/tex]:
[tex]\[ \sin^2 \theta = 1 - \frac{225}{289} \][/tex]
To proceed, we need to subtract [tex]\(\frac{225}{289}\)[/tex] from 1. We can convert 1 to a fraction with the same denominator:
[tex]\[ 1 = \frac{289}{289} \][/tex]
Thus:
[tex]\[ \sin^2 \theta = \frac{289}{289} - \frac{225}{289} = \frac{64}{289} \][/tex]
Now, taking the square root of both sides to find [tex]\(\sin \theta\)[/tex]:
[tex]\[ \sin \theta = \sqrt{\frac{64}{289}} = \frac{\sqrt{64}}{\sqrt{289}} = \frac{8}{17} \][/tex]
Given that [tex]\(\cos \theta\)[/tex] is positive and considering standard trigonometric functions in different quadrants, [tex]\(\sin \theta\)[/tex] should also be positive in this case.
Therefore, the value of [tex]\(\sin \theta\)[/tex] is:
[tex]\[ \boxed{\frac{8}{17}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.