Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Problem 11.002 - Light Waves Detected by Human Eyes

Under favorable conditions, the human eye can detect light waves with intensities as low as [tex]$2.50 \times 10^{-12} W/m^2$[/tex].

Problem 11.002.b - Average Power Emitted by the Source

If this light is produced by an isotropic source 13.7 m away, what is the average power emitted by the source?

[tex]\text{Answer: } \, \qquad \text{W}[/tex]


Sagot :

To solve this problem, we need to determine the average power emitted by an isotropic source given that the light intensity at a distance of 13.7 meters from the source is [tex]\(2.50 \times 10^{-12} \, \text{W/m}^2\)[/tex].

First, let's understand the relationship between the intensity of light and the power of the source. The intensity ([tex]\(I\)[/tex]) is defined as the power per unit area and for an isotropic source, the power is distributed uniformly in all directions over the surface of a sphere.

The formula for the intensity of light at a distance [tex]\(r\)[/tex] from the source is:

[tex]\[ I = \frac{P}{A} \][/tex]

where
- [tex]\(I\)[/tex] is the intensity of the light,
- [tex]\(P\)[/tex] is the total power emitted by the source,
- [tex]\(A\)[/tex] is the surface area of a sphere with radius [tex]\(r\)[/tex].

The surface area of a sphere is given by:

[tex]\[ A = 4\pi r^2 \][/tex]

Substituting this into the intensity formula, we get:

[tex]\[ I = \frac{P}{4\pi r^2} \][/tex]

To find the power ([tex]\(P\)[/tex]), we need to rearrange this formula:

[tex]\[ P = I \cdot 4\pi r^2 \][/tex]

Given that:
- [tex]\(I = 2.50 \times 10^{-12} \, \text{W/m}^2\)[/tex],
- [tex]\(r = 13.7 \, \text{m}\)[/tex],

we can calculate [tex]\(P\)[/tex] as follows:

[tex]\[ P = 2.50 \times 10^{-12} \times 4\pi \times (13.7)^2 \][/tex]

Plugging in the values:

[tex]\[ r^2 = (13.7)^2 = 187.69 \, \text{m}^2 \][/tex]

Then:

[tex]\[ P = 2.50 \times 10^{-12} \times 4\pi \times 187.69 \][/tex]

[tex]\[ P \approx 2.50 \times 10^{-12} \times 4 \times 3.14159 \times 187.69 \][/tex]

[tex]\[ P \approx 2.50 \times 10^{-12} \times 2357.52 \][/tex]

[tex]\[ P \approx 5.89 \times 10^{-9} \, \text{W} \][/tex]

Therefore, the average power emitted by the source is approximately

[tex]\[ 5.896455251522681 \times 10^{-9} \, \text{W} \][/tex]

So, the average power emitted by the isotropic light source is [tex]\( 5.896 \times 10^{-9} \)[/tex] watts.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.