Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's unpack the problem step by step.
We are given that a point, when reflected over the line [tex]\( y = -x \)[/tex], results in the coordinates [tex]\((-4, 9)\)[/tex]. Our task is to find the original coordinates of that point before the reflection, which we call the pre-image.
### Understanding Reflection Over [tex]\( y = -x \)[/tex]
When a point [tex]\((x, y)\)[/tex] is reflected over the line [tex]\( y = -x \)[/tex], its coordinates transform according to the rule:
[tex]\[ (x, y) \rightarrow (y, x) \][/tex]
However, because it's a reflection over the line [tex]\( y = -x \)[/tex], the coordinates also change their signs:
[tex]\[ (x, y) \rightarrow (-y, -x) \][/tex]
### Applying the Reflection Rule
Given the reflected coordinates are [tex]\((-4, 9)\)[/tex], we need to determine the pre-image that, when reflected over [tex]\( y = -x \)[/tex], results in these coordinates.
Using the reflection rule:
[tex]\[ (-y, -x) = (-4, 9) \][/tex]
Let's break this down:
- The x-coordinate of the pre-image is [tex]\( -y \)[/tex] and it equals [tex]\(-4\)[/tex]. Therefore:
[tex]\[ x = 9 \][/tex]
- The y-coordinate of the pre-image is [tex]\( -x \)[/tex] and it equals [tex]\( 9 \)[/tex]. Therefore:
[tex]\[ y = -4 \][/tex]
Thus, the coordinates of the pre-image are:
[tex]\[ (x, y) = (9, -4) \][/tex]
### Checking the Provided Options
The given options are:
1. [tex]\((-9, 4)\)[/tex]
2. [tex]\((-4, -9)\)[/tex]
3. [tex]\((4, 9)\)[/tex]
4. [tex]\( (9, -4) \)[/tex]
From our derivation, we find that the correct pre-image coordinates are:
[tex]\[ (9, -4) \][/tex]
Thus, the correct answer is:
[tex]\[ (9, -4) \][/tex]
We are given that a point, when reflected over the line [tex]\( y = -x \)[/tex], results in the coordinates [tex]\((-4, 9)\)[/tex]. Our task is to find the original coordinates of that point before the reflection, which we call the pre-image.
### Understanding Reflection Over [tex]\( y = -x \)[/tex]
When a point [tex]\((x, y)\)[/tex] is reflected over the line [tex]\( y = -x \)[/tex], its coordinates transform according to the rule:
[tex]\[ (x, y) \rightarrow (y, x) \][/tex]
However, because it's a reflection over the line [tex]\( y = -x \)[/tex], the coordinates also change their signs:
[tex]\[ (x, y) \rightarrow (-y, -x) \][/tex]
### Applying the Reflection Rule
Given the reflected coordinates are [tex]\((-4, 9)\)[/tex], we need to determine the pre-image that, when reflected over [tex]\( y = -x \)[/tex], results in these coordinates.
Using the reflection rule:
[tex]\[ (-y, -x) = (-4, 9) \][/tex]
Let's break this down:
- The x-coordinate of the pre-image is [tex]\( -y \)[/tex] and it equals [tex]\(-4\)[/tex]. Therefore:
[tex]\[ x = 9 \][/tex]
- The y-coordinate of the pre-image is [tex]\( -x \)[/tex] and it equals [tex]\( 9 \)[/tex]. Therefore:
[tex]\[ y = -4 \][/tex]
Thus, the coordinates of the pre-image are:
[tex]\[ (x, y) = (9, -4) \][/tex]
### Checking the Provided Options
The given options are:
1. [tex]\((-9, 4)\)[/tex]
2. [tex]\((-4, -9)\)[/tex]
3. [tex]\((4, 9)\)[/tex]
4. [tex]\( (9, -4) \)[/tex]
From our derivation, we find that the correct pre-image coordinates are:
[tex]\[ (9, -4) \][/tex]
Thus, the correct answer is:
[tex]\[ (9, -4) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.