Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for [tex]\(\cos(x)\)[/tex] given that [tex]\(\sin(x) = 0.9\)[/tex], we can use the Pythagorean identity in trigonometry, which states:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
1. We start by substituting the given value of [tex]\(\sin(x)\)[/tex] into the identity. First, calculate [tex]\(\sin^2(x)\)[/tex]:
[tex]\[ \sin(x) = 0.9 \implies \sin^2(x) = (0.9)^2 = 0.81 \][/tex]
2. Next, we substitute [tex]\(\sin^2(x)\)[/tex] into the Pythagorean identity to solve for [tex]\(\cos^2(x)\)[/tex]:
[tex]\[ 0.81 + \cos^2(x) = 1 \][/tex]
[tex]\[ \cos^2(x) = 1 - 0.81 = 0.19 \][/tex]
3. To find [tex]\(\cos(x)\)[/tex], take the square root of [tex]\(\cos^2(x)\)[/tex]:
[tex]\[ \cos(x) = \sqrt{0.19} \][/tex]
4. Calculating the square root gives us:
[tex]\[ \cos(x) \approx 0.4358898943540673 \][/tex]
5. Finally, round this value to the nearest hundredth:
[tex]\[ \cos(x) \approx 0.44 \][/tex]
Thus, the value of [tex]\(\cos(x)\)[/tex] rounded to the nearest hundredth is [tex]\(0.44\)[/tex].
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]
1. We start by substituting the given value of [tex]\(\sin(x)\)[/tex] into the identity. First, calculate [tex]\(\sin^2(x)\)[/tex]:
[tex]\[ \sin(x) = 0.9 \implies \sin^2(x) = (0.9)^2 = 0.81 \][/tex]
2. Next, we substitute [tex]\(\sin^2(x)\)[/tex] into the Pythagorean identity to solve for [tex]\(\cos^2(x)\)[/tex]:
[tex]\[ 0.81 + \cos^2(x) = 1 \][/tex]
[tex]\[ \cos^2(x) = 1 - 0.81 = 0.19 \][/tex]
3. To find [tex]\(\cos(x)\)[/tex], take the square root of [tex]\(\cos^2(x)\)[/tex]:
[tex]\[ \cos(x) = \sqrt{0.19} \][/tex]
4. Calculating the square root gives us:
[tex]\[ \cos(x) \approx 0.4358898943540673 \][/tex]
5. Finally, round this value to the nearest hundredth:
[tex]\[ \cos(x) \approx 0.44 \][/tex]
Thus, the value of [tex]\(\cos(x)\)[/tex] rounded to the nearest hundredth is [tex]\(0.44\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.