At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the statement is true, let's recall the formula for the distance between two points in a two-dimensional plane [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]. The distance [tex]\(d\)[/tex] is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Now, let's apply this formula for the specific points [tex]\((1, 2)\)[/tex] and [tex]\((x_1, y_1)\)[/tex].
Substituting [tex]\((x_2, y_2) = (1, 2)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] remains as [tex]\((x_1, y_1)\)[/tex], the distance [tex]\(d\)[/tex] becomes:
[tex]\[ d = \sqrt{(x_1 - 1)^2 + (y_1 - 2)^2} \][/tex]
The given statement says that the distance between the points [tex]\((1,2)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] is the square root of [tex]\((x_1 - 1)^2 + (y_1 - 2)^2\)[/tex]. This matches our derived formula.
Therefore, the given statement is:
A. True
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Now, let's apply this formula for the specific points [tex]\((1, 2)\)[/tex] and [tex]\((x_1, y_1)\)[/tex].
Substituting [tex]\((x_2, y_2) = (1, 2)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] remains as [tex]\((x_1, y_1)\)[/tex], the distance [tex]\(d\)[/tex] becomes:
[tex]\[ d = \sqrt{(x_1 - 1)^2 + (y_1 - 2)^2} \][/tex]
The given statement says that the distance between the points [tex]\((1,2)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] is the square root of [tex]\((x_1 - 1)^2 + (y_1 - 2)^2\)[/tex]. This matches our derived formula.
Therefore, the given statement is:
A. True
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.