Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Given the equation in standard form, provide the values of [tex]$a$[/tex], [tex]$b$[/tex], and [tex]$c$[/tex]:

[tex]\[
\frac{2}{3}(x-4)(x+5)=1
\][/tex]

A. [tex]$a = 2; b = 2; c = -43$[/tex]

B. [tex]$a = \frac{2}{3}; b = 1; c = -20$[/tex]

C. [tex]$a = 2; b = 2; c = 43$[/tex]


Sagot :

To convert the given equation

[tex]$ \frac{2}{3}(x-4)(x+5) = 1 $[/tex]

into its standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], we will follow these steps:

1. Expand the left-hand side: Start by expanding the left side of the equation.

[tex]\[ \frac{2}{3}(x-4)(x+5) \][/tex]

Use the distributive property (FOIL method) to expand [tex]\( (x-4)(x+5) \)[/tex]:

[tex]\[ (x-4)(x+5) = x^2 + 5x - 4x - 20 = x^2 + x - 20 \][/tex]

Now multiply this result by [tex]\( \frac{2}{3} \)[/tex]:

[tex]\[ \frac{2}{3} (x^2 + x - 20) = \frac{2}{3}x^2 + \frac{2}{3}x - \frac{40}{3} \][/tex]

2. Subtract 1 from both sides: To move everything to the left-hand side and set the equation to zero, subtract 1 from both sides of the equation:

[tex]\[ \frac{2}{3}x^2 + \frac{2}{3}x - \frac{40}{3} - 1 = 0 \][/tex]

3. Combine constants: [tex]\( - \frac{40}{3} - 1 \)[/tex] can be written as [tex]\( - \frac{40}{3} - \frac{3}{3} = - \frac{43}{3} \)[/tex].

So the equation becomes:

[tex]\[ \frac{2}{3}x^2 + \frac{2}{3}x - \frac{43}{3} = 0 \][/tex]

Now we have the equation in standard form:

[tex]\[ a = \frac{2}{3}, \quad b = \frac{2}{3}, \quad c = - \frac{43}{3} \][/tex]

Given the options:

[tex]\[ (A)\; 2 \quad B = 2 \quad C = -43 \\ (B)\; \frac{2}{3} \quad B = 1 \quad C = -20 \\ (C)\; 2 \quad B = 2 \quad C = 43 \][/tex]

None of the provided options match exactly with the calculated coefficients [tex]\( a, b, \)[/tex] and [tex]\( c \)[/tex]. However, our correct values are:

[tex]\[ a = \frac{2}{3}, \quad b = \frac{2}{3}, \quad c = - \frac{43}{3} \][/tex]

Therefore, if forced to choose from given options, consult the problem constraints and decide accordingly. However, our mathematically correct coefficients do not align with any of the provided options verbatim.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.