Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To analyze the discontinuities of the function [tex]\( f(x) = 4\lfloor x - 3 \rfloor + 2 \)[/tex], we need to understand the behavior of the floor function, [tex]\(\lfloor x - 3 \rfloor\)[/tex].
The floor function, [tex]\(\lfloor y \rfloor\)[/tex], returns the greatest integer less than or equal to [tex]\( y \)[/tex]. Hence, [tex]\(\lfloor x - 3 \rfloor\)[/tex] is the greatest integer less than or equal to [tex]\( x - 3 \)[/tex].
The floor function, [tex]\(\lfloor x - 3 \rfloor\)[/tex], is discontinuous at all points where [tex]\( x - 3 \)[/tex] is an integer because at these points, the value of [tex]\( \lfloor x - 3 \rfloor \)[/tex] jumps from one integer to another.
For [tex]\( \lfloor x - 3 \rfloor \)[/tex] to be an integer, [tex]\( x - 3 \)[/tex] must be an integer. Therefore, [tex]\( x \)[/tex] itself must be an integer because adding 3 to any integer is another integer.
Thus, the function [tex]\( f(x) = 4\lfloor x - 3 \rfloor + 2 \)[/tex] is discontinuous at all integer values of [tex]\( x \)[/tex].
Therefore, the graph of [tex]\( f(x) = 4\lfloor x - 3 \rfloor + 2 \)[/tex] is discontinuous at:
[tex]\[ \boxed{\text{all integers}} \][/tex]
The floor function, [tex]\(\lfloor y \rfloor\)[/tex], returns the greatest integer less than or equal to [tex]\( y \)[/tex]. Hence, [tex]\(\lfloor x - 3 \rfloor\)[/tex] is the greatest integer less than or equal to [tex]\( x - 3 \)[/tex].
The floor function, [tex]\(\lfloor x - 3 \rfloor\)[/tex], is discontinuous at all points where [tex]\( x - 3 \)[/tex] is an integer because at these points, the value of [tex]\( \lfloor x - 3 \rfloor \)[/tex] jumps from one integer to another.
For [tex]\( \lfloor x - 3 \rfloor \)[/tex] to be an integer, [tex]\( x - 3 \)[/tex] must be an integer. Therefore, [tex]\( x \)[/tex] itself must be an integer because adding 3 to any integer is another integer.
Thus, the function [tex]\( f(x) = 4\lfloor x - 3 \rfloor + 2 \)[/tex] is discontinuous at all integer values of [tex]\( x \)[/tex].
Therefore, the graph of [tex]\( f(x) = 4\lfloor x - 3 \rfloor + 2 \)[/tex] is discontinuous at:
[tex]\[ \boxed{\text{all integers}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.