Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve for [tex]\( F(x) \)[/tex], we need to carefully analyze and combine the components within the specified function. Let's break down the function into manageable parts.
Given:
[tex]\[ F(x) = \frac{e^{x^2 + 2x - 1}}{\sqrt{e^x - 1}} \][/tex]
### Step-by-Step Solution:
1. Understand the Numerator [tex]\( e^{x^2 + 2x - 1} \)[/tex]:
- The numerator consists of the exponential function [tex]\( e \)[/tex] raised to the power of a quadratic polynomial [tex]\( x^2 + 2x - 1 \)[/tex].
- [tex]\( e^{x^2 + 2x - 1} \)[/tex] represents an exponential growth where the exponent is a parabola opening upwards (since the coefficient of [tex]\( x^2 \)[/tex] is positive).
2. Understand the Denominator [tex]\( \sqrt{e^x - 1} \)[/tex]:
- The denominator is the square root of the expression [tex]\( e^x - 1 \)[/tex].
- Note that [tex]\( e^x \)[/tex] grows exponentially, and subtracting 1 makes sure the argument inside the square root is shifted by 1 unit downwards.
- For the square root to be real and defined, [tex]\( e^x - 1 \)[/tex] must be greater than 0, i.e., [tex]\( e^x > 1 \)[/tex], which is true for [tex]\( x > 0 \)[/tex].
3. Combining the Numerator and Denominator:
- The entire function [tex]\( F(x) \)[/tex] is the quotient of these two expressions.
- [tex]\( F(x) \)[/tex] combines the exponential growth in the numerator with a square root function in the denominator, which impacts the overall growth rate of the function.
### Recap of the Expression:
Putting it all together, our function is:
[tex]\[ F(x) = \frac{e^{x^2 + 2x - 1}}{\sqrt{e^x - 1}} \][/tex]
This is the simplified form of [tex]\( F(x) \)[/tex], showing the interplay between exponential and square root components.
### Conclusion:
The function we're given is complex due to its mixture of exponential and square root functions. However, understanding it step-by-step allows us to appreciate how it grows and behaves. For all practical purposes, [tex]\( e^{x^2 + 2x - 1} \)[/tex] in the numerator grows very quickly for increasing [tex]\( x \)[/tex], while the denominator [tex]\( \sqrt{e^x - 1} \)[/tex] also increases, albeit at a different rate.
So the final function after evaluating or simplifying as much as possible is:
[tex]\[ F(x) = \frac{e^{x^2 + 2x - 1}}{\sqrt{e^x - 1}} \][/tex]
Given:
[tex]\[ F(x) = \frac{e^{x^2 + 2x - 1}}{\sqrt{e^x - 1}} \][/tex]
### Step-by-Step Solution:
1. Understand the Numerator [tex]\( e^{x^2 + 2x - 1} \)[/tex]:
- The numerator consists of the exponential function [tex]\( e \)[/tex] raised to the power of a quadratic polynomial [tex]\( x^2 + 2x - 1 \)[/tex].
- [tex]\( e^{x^2 + 2x - 1} \)[/tex] represents an exponential growth where the exponent is a parabola opening upwards (since the coefficient of [tex]\( x^2 \)[/tex] is positive).
2. Understand the Denominator [tex]\( \sqrt{e^x - 1} \)[/tex]:
- The denominator is the square root of the expression [tex]\( e^x - 1 \)[/tex].
- Note that [tex]\( e^x \)[/tex] grows exponentially, and subtracting 1 makes sure the argument inside the square root is shifted by 1 unit downwards.
- For the square root to be real and defined, [tex]\( e^x - 1 \)[/tex] must be greater than 0, i.e., [tex]\( e^x > 1 \)[/tex], which is true for [tex]\( x > 0 \)[/tex].
3. Combining the Numerator and Denominator:
- The entire function [tex]\( F(x) \)[/tex] is the quotient of these two expressions.
- [tex]\( F(x) \)[/tex] combines the exponential growth in the numerator with a square root function in the denominator, which impacts the overall growth rate of the function.
### Recap of the Expression:
Putting it all together, our function is:
[tex]\[ F(x) = \frac{e^{x^2 + 2x - 1}}{\sqrt{e^x - 1}} \][/tex]
This is the simplified form of [tex]\( F(x) \)[/tex], showing the interplay between exponential and square root components.
### Conclusion:
The function we're given is complex due to its mixture of exponential and square root functions. However, understanding it step-by-step allows us to appreciate how it grows and behaves. For all practical purposes, [tex]\( e^{x^2 + 2x - 1} \)[/tex] in the numerator grows very quickly for increasing [tex]\( x \)[/tex], while the denominator [tex]\( \sqrt{e^x - 1} \)[/tex] also increases, albeit at a different rate.
So the final function after evaluating or simplifying as much as possible is:
[tex]\[ F(x) = \frac{e^{x^2 + 2x - 1}}{\sqrt{e^x - 1}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.