At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which statement must be true for the isosceles triangle ABC given that it has a [tex]$130^{\circ}$[/tex] angle at vertex B, let's analyze each statement carefully.
We know that:
- In an isosceles triangle, two angles are equal.
- The sum of the interior angles in any triangle is always [tex]$180^{\circ}$[/tex].
Given:
- [tex]$\angle B = 130^{\circ}$[/tex].
Therefore:
- The sum of the other two angles must be [tex]$180^{\circ} - 130^{\circ} = 50^{circ}$[/tex].
- Since it's an isosceles triangle, the two equal angles (let's call them [tex]\( \angle A \)[/tex] and [tex]\( \angle C \)[/tex]) must each be [tex]\( \frac{50^{\circ}}{2} = 25^{circ}\)[/tex].
Now, we'll review each statement:
1. [tex]$m_{\angle A} = 15^{\circ}$[/tex] and [tex]$m_{\angle C} = 35^{\circ}$[/tex]
- These angles sum to [tex]$15^{\circ} + 35^{\circ} = 50^{\circ}$[/tex] which matches our requirement that the other two angles sum to [tex]$50^{\circ}$[/tex].
- However, in an isosceles triangle, the two equal angles should be the same, but here [tex]\( \angle A \neq \angle C \)[/tex].
- Therefore, the statement is incorrect even though the sum fits.
2. [tex]$m_{\angle A} + m_{\angle B} = 155^{\circ}$[/tex]
- Here, [tex]\( \angle B = 130^{\circ} \)[/tex] and [tex]$m_{\angle A}$[/tex] is given by the nature of the isosceles triangle as [tex]$25^{\circ}$[/tex].
- [tex]$25^{\circ} + 130^{\circ} = 155^{\circ}$[/tex].
- This statement is factually correct.
3. [tex]$m_{\angle A} + m_{\angle C} = 60^{\circ}$[/tex]
- If both [tex]$\angle A$[/tex] and [tex]$\angle C$[/tex] are equal in an isosceles triangle and sum to [tex]$50^{\circ}$[/tex], their sum is not [tex]$60^{\circ}$[/tex].
- Therefore, this statement is incorrect.
4. [tex]$m_{\angle A} = 20^{\circ}$[/tex] and [tex]$m_{\angle C} = 30^{\circ}$[/tex]
- These angles also sum to [tex]$20^{\circ} + 30^{\circ} = 50^{\circ}$[/tex].
- However, [tex]\( \angle A \neq \angle C \)[/tex] whereas they should be equal in an isosceles triangle.
- Therefore, this statement is incorrect despite the sum fitting.
In summary:
- The correct statement that must be true, taking all the properties of the isosceles triangle into account, is:
[tex]\[ m_{\angle A} + m_{\angle B} = 155^{\circ} \][/tex]
So, the correct answer is:
[tex]\[ m_{\angle} A + m_{\angle B}=155^{\circ} \][/tex]
We know that:
- In an isosceles triangle, two angles are equal.
- The sum of the interior angles in any triangle is always [tex]$180^{\circ}$[/tex].
Given:
- [tex]$\angle B = 130^{\circ}$[/tex].
Therefore:
- The sum of the other two angles must be [tex]$180^{\circ} - 130^{\circ} = 50^{circ}$[/tex].
- Since it's an isosceles triangle, the two equal angles (let's call them [tex]\( \angle A \)[/tex] and [tex]\( \angle C \)[/tex]) must each be [tex]\( \frac{50^{\circ}}{2} = 25^{circ}\)[/tex].
Now, we'll review each statement:
1. [tex]$m_{\angle A} = 15^{\circ}$[/tex] and [tex]$m_{\angle C} = 35^{\circ}$[/tex]
- These angles sum to [tex]$15^{\circ} + 35^{\circ} = 50^{\circ}$[/tex] which matches our requirement that the other two angles sum to [tex]$50^{\circ}$[/tex].
- However, in an isosceles triangle, the two equal angles should be the same, but here [tex]\( \angle A \neq \angle C \)[/tex].
- Therefore, the statement is incorrect even though the sum fits.
2. [tex]$m_{\angle A} + m_{\angle B} = 155^{\circ}$[/tex]
- Here, [tex]\( \angle B = 130^{\circ} \)[/tex] and [tex]$m_{\angle A}$[/tex] is given by the nature of the isosceles triangle as [tex]$25^{\circ}$[/tex].
- [tex]$25^{\circ} + 130^{\circ} = 155^{\circ}$[/tex].
- This statement is factually correct.
3. [tex]$m_{\angle A} + m_{\angle C} = 60^{\circ}$[/tex]
- If both [tex]$\angle A$[/tex] and [tex]$\angle C$[/tex] are equal in an isosceles triangle and sum to [tex]$50^{\circ}$[/tex], their sum is not [tex]$60^{\circ}$[/tex].
- Therefore, this statement is incorrect.
4. [tex]$m_{\angle A} = 20^{\circ}$[/tex] and [tex]$m_{\angle C} = 30^{\circ}$[/tex]
- These angles also sum to [tex]$20^{\circ} + 30^{\circ} = 50^{\circ}$[/tex].
- However, [tex]\( \angle A \neq \angle C \)[/tex] whereas they should be equal in an isosceles triangle.
- Therefore, this statement is incorrect despite the sum fitting.
In summary:
- The correct statement that must be true, taking all the properties of the isosceles triangle into account, is:
[tex]\[ m_{\angle A} + m_{\angle B} = 155^{\circ} \][/tex]
So, the correct answer is:
[tex]\[ m_{\angle} A + m_{\angle B}=155^{\circ} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.