Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which statement must be true for the isosceles triangle ABC given that it has a [tex]$130^{\circ}$[/tex] angle at vertex B, let's analyze each statement carefully.
We know that:
- In an isosceles triangle, two angles are equal.
- The sum of the interior angles in any triangle is always [tex]$180^{\circ}$[/tex].
Given:
- [tex]$\angle B = 130^{\circ}$[/tex].
Therefore:
- The sum of the other two angles must be [tex]$180^{\circ} - 130^{\circ} = 50^{circ}$[/tex].
- Since it's an isosceles triangle, the two equal angles (let's call them [tex]\( \angle A \)[/tex] and [tex]\( \angle C \)[/tex]) must each be [tex]\( \frac{50^{\circ}}{2} = 25^{circ}\)[/tex].
Now, we'll review each statement:
1. [tex]$m_{\angle A} = 15^{\circ}$[/tex] and [tex]$m_{\angle C} = 35^{\circ}$[/tex]
- These angles sum to [tex]$15^{\circ} + 35^{\circ} = 50^{\circ}$[/tex] which matches our requirement that the other two angles sum to [tex]$50^{\circ}$[/tex].
- However, in an isosceles triangle, the two equal angles should be the same, but here [tex]\( \angle A \neq \angle C \)[/tex].
- Therefore, the statement is incorrect even though the sum fits.
2. [tex]$m_{\angle A} + m_{\angle B} = 155^{\circ}$[/tex]
- Here, [tex]\( \angle B = 130^{\circ} \)[/tex] and [tex]$m_{\angle A}$[/tex] is given by the nature of the isosceles triangle as [tex]$25^{\circ}$[/tex].
- [tex]$25^{\circ} + 130^{\circ} = 155^{\circ}$[/tex].
- This statement is factually correct.
3. [tex]$m_{\angle A} + m_{\angle C} = 60^{\circ}$[/tex]
- If both [tex]$\angle A$[/tex] and [tex]$\angle C$[/tex] are equal in an isosceles triangle and sum to [tex]$50^{\circ}$[/tex], their sum is not [tex]$60^{\circ}$[/tex].
- Therefore, this statement is incorrect.
4. [tex]$m_{\angle A} = 20^{\circ}$[/tex] and [tex]$m_{\angle C} = 30^{\circ}$[/tex]
- These angles also sum to [tex]$20^{\circ} + 30^{\circ} = 50^{\circ}$[/tex].
- However, [tex]\( \angle A \neq \angle C \)[/tex] whereas they should be equal in an isosceles triangle.
- Therefore, this statement is incorrect despite the sum fitting.
In summary:
- The correct statement that must be true, taking all the properties of the isosceles triangle into account, is:
[tex]\[ m_{\angle A} + m_{\angle B} = 155^{\circ} \][/tex]
So, the correct answer is:
[tex]\[ m_{\angle} A + m_{\angle B}=155^{\circ} \][/tex]
We know that:
- In an isosceles triangle, two angles are equal.
- The sum of the interior angles in any triangle is always [tex]$180^{\circ}$[/tex].
Given:
- [tex]$\angle B = 130^{\circ}$[/tex].
Therefore:
- The sum of the other two angles must be [tex]$180^{\circ} - 130^{\circ} = 50^{circ}$[/tex].
- Since it's an isosceles triangle, the two equal angles (let's call them [tex]\( \angle A \)[/tex] and [tex]\( \angle C \)[/tex]) must each be [tex]\( \frac{50^{\circ}}{2} = 25^{circ}\)[/tex].
Now, we'll review each statement:
1. [tex]$m_{\angle A} = 15^{\circ}$[/tex] and [tex]$m_{\angle C} = 35^{\circ}$[/tex]
- These angles sum to [tex]$15^{\circ} + 35^{\circ} = 50^{\circ}$[/tex] which matches our requirement that the other two angles sum to [tex]$50^{\circ}$[/tex].
- However, in an isosceles triangle, the two equal angles should be the same, but here [tex]\( \angle A \neq \angle C \)[/tex].
- Therefore, the statement is incorrect even though the sum fits.
2. [tex]$m_{\angle A} + m_{\angle B} = 155^{\circ}$[/tex]
- Here, [tex]\( \angle B = 130^{\circ} \)[/tex] and [tex]$m_{\angle A}$[/tex] is given by the nature of the isosceles triangle as [tex]$25^{\circ}$[/tex].
- [tex]$25^{\circ} + 130^{\circ} = 155^{\circ}$[/tex].
- This statement is factually correct.
3. [tex]$m_{\angle A} + m_{\angle C} = 60^{\circ}$[/tex]
- If both [tex]$\angle A$[/tex] and [tex]$\angle C$[/tex] are equal in an isosceles triangle and sum to [tex]$50^{\circ}$[/tex], their sum is not [tex]$60^{\circ}$[/tex].
- Therefore, this statement is incorrect.
4. [tex]$m_{\angle A} = 20^{\circ}$[/tex] and [tex]$m_{\angle C} = 30^{\circ}$[/tex]
- These angles also sum to [tex]$20^{\circ} + 30^{\circ} = 50^{\circ}$[/tex].
- However, [tex]\( \angle A \neq \angle C \)[/tex] whereas they should be equal in an isosceles triangle.
- Therefore, this statement is incorrect despite the sum fitting.
In summary:
- The correct statement that must be true, taking all the properties of the isosceles triangle into account, is:
[tex]\[ m_{\angle A} + m_{\angle B} = 155^{\circ} \][/tex]
So, the correct answer is:
[tex]\[ m_{\angle} A + m_{\angle B}=155^{\circ} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.