Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the absolute value inequality:
[tex]\[ \frac{|2x + 1|}{3} \geq 5 \][/tex]
Let's start by isolating the absolute value expression. Multiply both sides of the inequality by 3:
[tex]\[ |2x + 1| \geq 15 \][/tex]
The absolute value inequality [tex]\( |2x + 1| \geq 15 \)[/tex] means that the expression inside the absolute value, [tex]\( 2x + 1 \)[/tex], is either greater than or equal to 15, or less than or equal to -15.
This gives us two inequalities to solve:
1. [tex]\( 2x + 1 \geq 15 \)[/tex]
2. [tex]\( 2x + 1 \leq -15 \)[/tex]
### Solving the First Inequality
[tex]\[ 2x + 1 \geq 15 \][/tex]
Subtract 1 from both sides:
[tex]\[ 2x \geq 14 \][/tex]
Divide both sides by 2:
[tex]\[ x \geq 7 \][/tex]
### Solving the Second Inequality
[tex]\[ 2x + 1 \leq -15 \][/tex]
Subtract 1 from both sides:
[tex]\[ 2x \leq -16 \][/tex]
Divide both sides by 2:
[tex]\[ x \leq -8 \][/tex]
### Combining the Solutions
The solutions to the original inequality are the values of [tex]\( x \)[/tex] that satisfy either:
[tex]\[ x \geq 7 \quad \text{or} \quad x \leq -8 \][/tex]
Therefore, the final solution is:
[tex]\[ x \geq 7 \quad \text{or} \quad x \leq -8 \][/tex]
[tex]\[ \frac{|2x + 1|}{3} \geq 5 \][/tex]
Let's start by isolating the absolute value expression. Multiply both sides of the inequality by 3:
[tex]\[ |2x + 1| \geq 15 \][/tex]
The absolute value inequality [tex]\( |2x + 1| \geq 15 \)[/tex] means that the expression inside the absolute value, [tex]\( 2x + 1 \)[/tex], is either greater than or equal to 15, or less than or equal to -15.
This gives us two inequalities to solve:
1. [tex]\( 2x + 1 \geq 15 \)[/tex]
2. [tex]\( 2x + 1 \leq -15 \)[/tex]
### Solving the First Inequality
[tex]\[ 2x + 1 \geq 15 \][/tex]
Subtract 1 from both sides:
[tex]\[ 2x \geq 14 \][/tex]
Divide both sides by 2:
[tex]\[ x \geq 7 \][/tex]
### Solving the Second Inequality
[tex]\[ 2x + 1 \leq -15 \][/tex]
Subtract 1 from both sides:
[tex]\[ 2x \leq -16 \][/tex]
Divide both sides by 2:
[tex]\[ x \leq -8 \][/tex]
### Combining the Solutions
The solutions to the original inequality are the values of [tex]\( x \)[/tex] that satisfy either:
[tex]\[ x \geq 7 \quad \text{or} \quad x \leq -8 \][/tex]
Therefore, the final solution is:
[tex]\[ x \geq 7 \quad \text{or} \quad x \leq -8 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.