Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's determine which of the given conditions are not at equilibrium for the reaction:
[tex]\[ \text{H}_2(g) + \text{Cl}_2(g) \leftrightarrows 2 \text{HCl}(g) \][/tex]
The equilibrium constant, [tex]\( K_p \)[/tex], at [tex]\( 25^\circ C \)[/tex] is 13.75. The reaction quotient, [tex]\( Q_p \)[/tex], is given by:
[tex]\[ Q_p = \frac{(P_{\text{HCl}})^2}{P_{\text{H}_2} \cdot P_{\text{Cl}_2}} \][/tex]
We will calculate [tex]\( Q_p \)[/tex] for each condition and compare it to [tex]\( K_p \)[/tex].
Condition a:
[tex]\[ P_{\text{H}_2} = 0.085 \, \text{atm}, \, P_{\text{Cl}_2} = 0.085 \, \text{atm}, \, P_{\text{HCl}} = 0.32 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(0.32)^2}{0.085 \cdot 0.085} = \frac{0.1024}{0.007225} \approx 14.18 \][/tex]
Condition b:
[tex]\[ P_{\text{H}_2} = 0.270 \, \text{atm}, \, P_{\text{Cl}_2} = 0.270 \, \text{atm}, \, P_{\text{HCl}} = 1.0 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(1.0)^2}{0.270 \cdot 0.270} = \frac{1.0}{0.0729} \approx 13.72 \][/tex]
Condition c:
[tex]\[ P_{\text{H}_2} = 1.25 \, \text{atm}, \, P_{\text{Cl}_2} = 0.121 \, \text{atm}, \, P_{\text{HCl}} = 0.5 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(0.5)^2}{1.25 \cdot 0.121} = \frac{0.25}{0.15125} \approx 1.65 \][/tex]
Condition d:
[tex]\[ P_{\text{H}_2} = 0.125 \, \text{atm}, \, P_{\text{Cl}_2} = 1.31 \, \text{atm}, \, P_{\text{HCl}} = 1.5 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(1.5)^2}{0.125 \cdot 1.31} = \frac{2.25}{0.16375} \approx 13.74 \][/tex]
Now we compare [tex]\( Q_p \)[/tex] to [tex]\( K_p = 13.75 \)[/tex]. We find:
- For condition a, [tex]\( Q_p \approx 14.18 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition b, [tex]\( Q_p \approx 13.72 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition c, [tex]\( Q_p \approx 1.65 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition d, [tex]\( Q_p \approx 13.74 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
Since all the calculated [tex]\( Q_p \)[/tex] values are not equal to [tex]\( K_p \)[/tex], all of the above conditions are not at equilibrium.
The correct selection is:
[tex]\[ \boxed{\text{e. all of the above are at equilibrium}} \][/tex]
[tex]\[ \text{H}_2(g) + \text{Cl}_2(g) \leftrightarrows 2 \text{HCl}(g) \][/tex]
The equilibrium constant, [tex]\( K_p \)[/tex], at [tex]\( 25^\circ C \)[/tex] is 13.75. The reaction quotient, [tex]\( Q_p \)[/tex], is given by:
[tex]\[ Q_p = \frac{(P_{\text{HCl}})^2}{P_{\text{H}_2} \cdot P_{\text{Cl}_2}} \][/tex]
We will calculate [tex]\( Q_p \)[/tex] for each condition and compare it to [tex]\( K_p \)[/tex].
Condition a:
[tex]\[ P_{\text{H}_2} = 0.085 \, \text{atm}, \, P_{\text{Cl}_2} = 0.085 \, \text{atm}, \, P_{\text{HCl}} = 0.32 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(0.32)^2}{0.085 \cdot 0.085} = \frac{0.1024}{0.007225} \approx 14.18 \][/tex]
Condition b:
[tex]\[ P_{\text{H}_2} = 0.270 \, \text{atm}, \, P_{\text{Cl}_2} = 0.270 \, \text{atm}, \, P_{\text{HCl}} = 1.0 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(1.0)^2}{0.270 \cdot 0.270} = \frac{1.0}{0.0729} \approx 13.72 \][/tex]
Condition c:
[tex]\[ P_{\text{H}_2} = 1.25 \, \text{atm}, \, P_{\text{Cl}_2} = 0.121 \, \text{atm}, \, P_{\text{HCl}} = 0.5 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(0.5)^2}{1.25 \cdot 0.121} = \frac{0.25}{0.15125} \approx 1.65 \][/tex]
Condition d:
[tex]\[ P_{\text{H}_2} = 0.125 \, \text{atm}, \, P_{\text{Cl}_2} = 1.31 \, \text{atm}, \, P_{\text{HCl}} = 1.5 \, \text{atm} \][/tex]
[tex]\[ Q_p = \frac{(1.5)^2}{0.125 \cdot 1.31} = \frac{2.25}{0.16375} \approx 13.74 \][/tex]
Now we compare [tex]\( Q_p \)[/tex] to [tex]\( K_p = 13.75 \)[/tex]. We find:
- For condition a, [tex]\( Q_p \approx 14.18 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition b, [tex]\( Q_p \approx 13.72 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition c, [tex]\( Q_p \approx 1.65 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
- For condition d, [tex]\( Q_p \approx 13.74 \ne 13.75 \)[/tex]. Thus, it is not at equilibrium.
Since all the calculated [tex]\( Q_p \)[/tex] values are not equal to [tex]\( K_p \)[/tex], all of the above conditions are not at equilibrium.
The correct selection is:
[tex]\[ \boxed{\text{e. all of the above are at equilibrium}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.