At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine if the conditions are at equilibrium for the reaction [tex]\(H_2(g) + Cl_2(g) \rightleftharpoons 2 HCl(g)\)[/tex], where the equilibrium constant [tex]\(K_p\)[/tex] is 13.75 at 25°C, we can compare the reaction quotient [tex]\(Q\)[/tex] for each set of initial conditions to the equilibrium constant [tex]\(K_p\)[/tex]. The reaction quotient [tex]\(Q\)[/tex] is calculated using the same formula used for the equilibrium constant but with the current concentrations (or partial pressures if we were dealing with gases).
The reaction quotient [tex]\(Q\)[/tex] for this reaction is given by:
[tex]\[ Q = \frac{[HCl]^2}{[H_2] \cdot [Cl_2]} \][/tex]
Now, let's calculate [tex]\(Q\)[/tex] for each set of initial conditions and compare it with [tex]\(K_p = 13.75\)[/tex].
### Initial Conditions and Calculations
1. Condition 1:
- [tex]\( [H_2] = 0.1 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1.5 \)[/tex]
[tex]\[ Q = \frac{(1.5)^2}{(0.1) \cdot (0.2)} = \frac{2.25}{0.02} = 112.50 \][/tex]
2. Condition 2:
- [tex]\( [H_2] = 0.5 \)[/tex]
- [tex]\( [Cl_2] = 0.5 \)[/tex]
- [tex]\( [HCl] = 2 \)[/tex]
[tex]\[ Q = \frac{(2)^2}{(0.5) \cdot (0.5)} = \frac{4}{0.25} = 16.00 \][/tex]
3. Condition 3:
- [tex]\( [H_2] = 0.3 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1 \)[/tex]
[tex]\[ Q = \frac{(1)^2}{(0.3) \cdot (0.2)} = \frac{1}{0.06} = 16.67 \][/tex]
4. Condition 4:
- [tex]\( [H_2] = 0.4 \)[/tex]
- [tex]\( [Cl_2] = 0.4 \)[/tex]
- [tex]\( [HCl] = 4 \)[/tex]
[tex]\[ Q = \frac{(4)^2}{(0.4) \cdot (0.4)} = \frac{16}{0.16} = 100.00 \][/tex]
### Comparison with [tex]\(K_p = 13.75\)[/tex]
Now we compare [tex]\(Q\)[/tex] to [tex]\(K_p\)[/tex] for each condition:
- Condition 1: [tex]\(Q = 112.50\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 2: [tex]\(Q = 16.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 3: [tex]\(Q = 16.67\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 4: [tex]\(Q = 100.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
### Conclusion
Since [tex]\(Q\)[/tex] is not equal to [tex]\(K_p\)[/tex] (13.75) for any of the conditions, none of them are at equilibrium.
Thus, the conditions that are NOT at equilibrium are:
1. Condition 1
2. Condition 2
3. Condition 3
4. Condition 4
The reaction quotient [tex]\(Q\)[/tex] for this reaction is given by:
[tex]\[ Q = \frac{[HCl]^2}{[H_2] \cdot [Cl_2]} \][/tex]
Now, let's calculate [tex]\(Q\)[/tex] for each set of initial conditions and compare it with [tex]\(K_p = 13.75\)[/tex].
### Initial Conditions and Calculations
1. Condition 1:
- [tex]\( [H_2] = 0.1 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1.5 \)[/tex]
[tex]\[ Q = \frac{(1.5)^2}{(0.1) \cdot (0.2)} = \frac{2.25}{0.02} = 112.50 \][/tex]
2. Condition 2:
- [tex]\( [H_2] = 0.5 \)[/tex]
- [tex]\( [Cl_2] = 0.5 \)[/tex]
- [tex]\( [HCl] = 2 \)[/tex]
[tex]\[ Q = \frac{(2)^2}{(0.5) \cdot (0.5)} = \frac{4}{0.25} = 16.00 \][/tex]
3. Condition 3:
- [tex]\( [H_2] = 0.3 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1 \)[/tex]
[tex]\[ Q = \frac{(1)^2}{(0.3) \cdot (0.2)} = \frac{1}{0.06} = 16.67 \][/tex]
4. Condition 4:
- [tex]\( [H_2] = 0.4 \)[/tex]
- [tex]\( [Cl_2] = 0.4 \)[/tex]
- [tex]\( [HCl] = 4 \)[/tex]
[tex]\[ Q = \frac{(4)^2}{(0.4) \cdot (0.4)} = \frac{16}{0.16} = 100.00 \][/tex]
### Comparison with [tex]\(K_p = 13.75\)[/tex]
Now we compare [tex]\(Q\)[/tex] to [tex]\(K_p\)[/tex] for each condition:
- Condition 1: [tex]\(Q = 112.50\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 2: [tex]\(Q = 16.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 3: [tex]\(Q = 16.67\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 4: [tex]\(Q = 100.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
### Conclusion
Since [tex]\(Q\)[/tex] is not equal to [tex]\(K_p\)[/tex] (13.75) for any of the conditions, none of them are at equilibrium.
Thus, the conditions that are NOT at equilibrium are:
1. Condition 1
2. Condition 2
3. Condition 3
4. Condition 4
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.