At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine if the conditions are at equilibrium for the reaction [tex]\(H_2(g) + Cl_2(g) \rightleftharpoons 2 HCl(g)\)[/tex], where the equilibrium constant [tex]\(K_p\)[/tex] is 13.75 at 25°C, we can compare the reaction quotient [tex]\(Q\)[/tex] for each set of initial conditions to the equilibrium constant [tex]\(K_p\)[/tex]. The reaction quotient [tex]\(Q\)[/tex] is calculated using the same formula used for the equilibrium constant but with the current concentrations (or partial pressures if we were dealing with gases).
The reaction quotient [tex]\(Q\)[/tex] for this reaction is given by:
[tex]\[ Q = \frac{[HCl]^2}{[H_2] \cdot [Cl_2]} \][/tex]
Now, let's calculate [tex]\(Q\)[/tex] for each set of initial conditions and compare it with [tex]\(K_p = 13.75\)[/tex].
### Initial Conditions and Calculations
1. Condition 1:
- [tex]\( [H_2] = 0.1 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1.5 \)[/tex]
[tex]\[ Q = \frac{(1.5)^2}{(0.1) \cdot (0.2)} = \frac{2.25}{0.02} = 112.50 \][/tex]
2. Condition 2:
- [tex]\( [H_2] = 0.5 \)[/tex]
- [tex]\( [Cl_2] = 0.5 \)[/tex]
- [tex]\( [HCl] = 2 \)[/tex]
[tex]\[ Q = \frac{(2)^2}{(0.5) \cdot (0.5)} = \frac{4}{0.25} = 16.00 \][/tex]
3. Condition 3:
- [tex]\( [H_2] = 0.3 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1 \)[/tex]
[tex]\[ Q = \frac{(1)^2}{(0.3) \cdot (0.2)} = \frac{1}{0.06} = 16.67 \][/tex]
4. Condition 4:
- [tex]\( [H_2] = 0.4 \)[/tex]
- [tex]\( [Cl_2] = 0.4 \)[/tex]
- [tex]\( [HCl] = 4 \)[/tex]
[tex]\[ Q = \frac{(4)^2}{(0.4) \cdot (0.4)} = \frac{16}{0.16} = 100.00 \][/tex]
### Comparison with [tex]\(K_p = 13.75\)[/tex]
Now we compare [tex]\(Q\)[/tex] to [tex]\(K_p\)[/tex] for each condition:
- Condition 1: [tex]\(Q = 112.50\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 2: [tex]\(Q = 16.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 3: [tex]\(Q = 16.67\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 4: [tex]\(Q = 100.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
### Conclusion
Since [tex]\(Q\)[/tex] is not equal to [tex]\(K_p\)[/tex] (13.75) for any of the conditions, none of them are at equilibrium.
Thus, the conditions that are NOT at equilibrium are:
1. Condition 1
2. Condition 2
3. Condition 3
4. Condition 4
The reaction quotient [tex]\(Q\)[/tex] for this reaction is given by:
[tex]\[ Q = \frac{[HCl]^2}{[H_2] \cdot [Cl_2]} \][/tex]
Now, let's calculate [tex]\(Q\)[/tex] for each set of initial conditions and compare it with [tex]\(K_p = 13.75\)[/tex].
### Initial Conditions and Calculations
1. Condition 1:
- [tex]\( [H_2] = 0.1 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1.5 \)[/tex]
[tex]\[ Q = \frac{(1.5)^2}{(0.1) \cdot (0.2)} = \frac{2.25}{0.02} = 112.50 \][/tex]
2. Condition 2:
- [tex]\( [H_2] = 0.5 \)[/tex]
- [tex]\( [Cl_2] = 0.5 \)[/tex]
- [tex]\( [HCl] = 2 \)[/tex]
[tex]\[ Q = \frac{(2)^2}{(0.5) \cdot (0.5)} = \frac{4}{0.25} = 16.00 \][/tex]
3. Condition 3:
- [tex]\( [H_2] = 0.3 \)[/tex]
- [tex]\( [Cl_2] = 0.2 \)[/tex]
- [tex]\( [HCl] = 1 \)[/tex]
[tex]\[ Q = \frac{(1)^2}{(0.3) \cdot (0.2)} = \frac{1}{0.06} = 16.67 \][/tex]
4. Condition 4:
- [tex]\( [H_2] = 0.4 \)[/tex]
- [tex]\( [Cl_2] = 0.4 \)[/tex]
- [tex]\( [HCl] = 4 \)[/tex]
[tex]\[ Q = \frac{(4)^2}{(0.4) \cdot (0.4)} = \frac{16}{0.16} = 100.00 \][/tex]
### Comparison with [tex]\(K_p = 13.75\)[/tex]
Now we compare [tex]\(Q\)[/tex] to [tex]\(K_p\)[/tex] for each condition:
- Condition 1: [tex]\(Q = 112.50\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 2: [tex]\(Q = 16.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 3: [tex]\(Q = 16.67\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
- Condition 4: [tex]\(Q = 100.00\)[/tex]; [tex]\(Q \neq K_p\)[/tex]
### Conclusion
Since [tex]\(Q\)[/tex] is not equal to [tex]\(K_p\)[/tex] (13.75) for any of the conditions, none of them are at equilibrium.
Thus, the conditions that are NOT at equilibrium are:
1. Condition 1
2. Condition 2
3. Condition 3
4. Condition 4
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.