Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Select the best answer for the question.

8. Simplify [tex]\((2x+3)(x-4) =\)[/tex] ?

A. [tex]\(2x^2 - 5x + 12\)[/tex]
B. [tex]\(2x^2 + 5x - 12\)[/tex]
C. [tex]\(2x^2 - 5x - 12\)[/tex]
D. [tex]\(2x^2 + 5x + 12\)[/tex]

Sagot :

To simplify the expression [tex]\((2x+3)(x-4)\)[/tex], we can follow these detailed steps:

1. Distribute each term in the first binomial to each term in the second binomial: Use the distributive property (also known as the FOIL method for binomials) to expand the expression.

[tex]\[ (2x + 3)(x - 4) \][/tex]

2. Multiply the terms:

- First: Multiply the first terms of each binomial:
[tex]\[ 2x \cdot x = 2x^2 \][/tex]

- Outer: Multiply the outer terms of the binomials:
[tex]\[ 2x \cdot (-4) = -8x \][/tex]

- Inner: Multiply the inner terms of the binomials:
[tex]\[ 3 \cdot x = 3x \][/tex]

- Last: Multiply the last terms of each binomial:
[tex]\[ 3 \cdot (-4) = -12 \][/tex]

3. Combine all the products from the previous step:

[tex]\[ 2x^2 + (-8x) + 3x + (-12) \][/tex]

4. Combine like terms:

[tex]\[ 2x^2 - 8x + 3x - 12 \][/tex]

Combine the [tex]\(x\)[/tex] terms:

[tex]\[ 2x^2 - 5x - 12 \][/tex]

Therefore, the simplified expression is:

[tex]\[ 2x^2 - 5x - 12 \][/tex]

So, the best answer to the given question is:

C. [tex]\(2x^2 - 5x - 12\)[/tex]