At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem of finding the binomial distribution for flipping a coin 3 times, where "heads" is considered a success, we will use the binomial probability formula:
[tex]\[ P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Here:
- [tex]\(n\)[/tex] is the number of trials (3 coin flips),
- [tex]\(k\)[/tex] is the number of successes (which can be 0, 1, 2, or 3),
- [tex]\(p\)[/tex] is the probability of success on a single trial (for heads in a fair coin, [tex]\(p = 0.5\)[/tex]),
- [tex]\(\binom{n}{k}\)[/tex] (read as "n choose k") is the binomial coefficient.
Let's calculate the probabilities for each value of [tex]\(k\)[/tex].
### 1. [tex]\(P(0 \text{ successes})\)[/tex]
[tex]\[ P(0 \text{ successes}) = \binom{3}{0} (0.5)^0 (0.5)^{3-0} \][/tex]
[tex]\[ P(0 \text{ successes}) = 1 \cdot 1 \cdot (0.5)^3 = 1 \cdot 1 \cdot 0.125 = 0.125 \][/tex]
### 2. [tex]\(P(1 \text{ success})\)[/tex]
[tex]\[ P(1 \text{ success}) = \binom{3}{1} (0.5)^1 (0.5)^{3-1} \][/tex]
[tex]\[ P(1 \text{ success}) = 3 \cdot 0.5 \cdot (0.5)^2 = 3 \cdot 0.5 \cdot 0.25 = 0.375 \][/tex]
### 3. [tex]\(P(2 \text{ successes})\)[/tex]
[tex]\[ P(2 \text{ successes}) = \binom{3}{2} (0.5)^2 (0.5)^{3-2} \][/tex]
[tex]\[ P(2 \text{ successes}) = 3 \cdot (0.5)^2 \cdot 0.5 = 3 \cdot 0.25 \cdot 0.5 = 0.375 \][/tex]
### 4. [tex]\(P(3 \text{ successes})\)[/tex]
[tex]\[ P(3 \text{ successes}) = \binom{3}{3} (0.5)^3 (0.5)^{3-3} \][/tex]
[tex]\[ P(3 \text{ successes}) = 1 \cdot (0.5)^3 \cdot 1 = 1 \cdot 0.125 \cdot 1 = 0.125 \][/tex]
Thus, the binomial distribution for flipping a coin 3 times, considering heads as a success, is as follows:
[tex]\[ P(0 \text{ successes}) = 0.125 \][/tex]
[tex]\[ P(1 \text{ success}) = 0.375 \][/tex]
[tex]\[ P(2 \text{ successes}) = 0.375 \][/tex]
[tex]\[ P(3 \text{ successes}) = 0.125 \][/tex]
[tex]\[ P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Here:
- [tex]\(n\)[/tex] is the number of trials (3 coin flips),
- [tex]\(k\)[/tex] is the number of successes (which can be 0, 1, 2, or 3),
- [tex]\(p\)[/tex] is the probability of success on a single trial (for heads in a fair coin, [tex]\(p = 0.5\)[/tex]),
- [tex]\(\binom{n}{k}\)[/tex] (read as "n choose k") is the binomial coefficient.
Let's calculate the probabilities for each value of [tex]\(k\)[/tex].
### 1. [tex]\(P(0 \text{ successes})\)[/tex]
[tex]\[ P(0 \text{ successes}) = \binom{3}{0} (0.5)^0 (0.5)^{3-0} \][/tex]
[tex]\[ P(0 \text{ successes}) = 1 \cdot 1 \cdot (0.5)^3 = 1 \cdot 1 \cdot 0.125 = 0.125 \][/tex]
### 2. [tex]\(P(1 \text{ success})\)[/tex]
[tex]\[ P(1 \text{ success}) = \binom{3}{1} (0.5)^1 (0.5)^{3-1} \][/tex]
[tex]\[ P(1 \text{ success}) = 3 \cdot 0.5 \cdot (0.5)^2 = 3 \cdot 0.5 \cdot 0.25 = 0.375 \][/tex]
### 3. [tex]\(P(2 \text{ successes})\)[/tex]
[tex]\[ P(2 \text{ successes}) = \binom{3}{2} (0.5)^2 (0.5)^{3-2} \][/tex]
[tex]\[ P(2 \text{ successes}) = 3 \cdot (0.5)^2 \cdot 0.5 = 3 \cdot 0.25 \cdot 0.5 = 0.375 \][/tex]
### 4. [tex]\(P(3 \text{ successes})\)[/tex]
[tex]\[ P(3 \text{ successes}) = \binom{3}{3} (0.5)^3 (0.5)^{3-3} \][/tex]
[tex]\[ P(3 \text{ successes}) = 1 \cdot (0.5)^3 \cdot 1 = 1 \cdot 0.125 \cdot 1 = 0.125 \][/tex]
Thus, the binomial distribution for flipping a coin 3 times, considering heads as a success, is as follows:
[tex]\[ P(0 \text{ successes}) = 0.125 \][/tex]
[tex]\[ P(1 \text{ success}) = 0.375 \][/tex]
[tex]\[ P(2 \text{ successes}) = 0.375 \][/tex]
[tex]\[ P(3 \text{ successes}) = 0.125 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.