Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the probability that you will get "heads" no more than once out of 3 flips, we need to consider the scenarios in which you get 0 or 1 head. We can break this down into two parts: the probability of getting 0 heads and the probability of getting 1 head.
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.