At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the probability that you will get "heads" no more than once out of 3 flips, we need to consider the scenarios in which you get 0 or 1 head. We can break this down into two parts: the probability of getting 0 heads and the probability of getting 1 head.
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.