Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the probability that you will get "heads" no more than once out of 3 flips, we need to consider the scenarios in which you get 0 or 1 head. We can break this down into two parts: the probability of getting 0 heads and the probability of getting 1 head.
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
We will use the binomial distribution formula to find these probabilities. For a binomial distribution with [tex]\( n \)[/tex] trials and probability [tex]\( p \)[/tex] of success on each trial, the probability of getting exactly [tex]\( k \)[/tex] successes is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]\( k \)[/tex] successes out of [tex]\( n \)[/tex] trials, and is calculated as:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Given:
- [tex]\( n = 3 \)[/tex] (the number of flips)
- [tex]\( p = 0.5 \)[/tex] (the probability of getting heads in a single flip)
1. Calculate the probability of getting 0 heads ([tex]\( k = 0 \)[/tex]):
[tex]\[ P_0 = \binom{3}{0} (0.5)^0 (1 - 0.5)^{3-0} \][/tex]
[tex]\[ P_0 = \frac{3!}{0!(3-0)!} (0.5)^0 (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 1 \cdot (0.5)^3 \][/tex]
[tex]\[ P_0 = 1 \cdot 0.125 \][/tex]
[tex]\[ P_0 = 0.125 \][/tex]
2. Calculate the probability of getting 1 head ([tex]\( k = 1 \)[/tex]):
[tex]\[ P_1 = \binom{3}{1} (0.5)^1 (1 - 0.5)^{3-1} \][/tex]
[tex]\[ P_1 = \frac{3!}{1!(3-1)!} (0.5)^1 (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot (0.5)^2 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.5 \cdot 0.25 \][/tex]
[tex]\[ P_1 = 3 \cdot 0.125 \][/tex]
[tex]\[ P_1 = 0.375 \][/tex]
Adding the probabilities together:
[tex]\[ P(\text{0 or 1 heads}) = P_0 + P_1 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.125 + 0.375 \][/tex]
[tex]\[ P(\text{0 or 1 heads}) = 0.5 \][/tex]
Therefore, the probability that you will get "heads" no more than once out of 3 flips is [tex]\( \boxed{0.5} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.