Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the range of the function [tex]\( f(x) = \sin(x) \)[/tex], let's first understand what the range of a function represents. The range of a function is the set of all possible output values (y-values) that the function can produce.
The sine function, [tex]\( \sin(x) \)[/tex], is a periodic function that oscillates between a maximum value and a minimum value. To find these values, consider the general properties of the sine function:
- The sine function has a maximum value of 1.
- The sine function has a minimum value of -1.
These characteristics imply that the sine function will output values that are contained within and including these bounds.
Therefore, the range of the function [tex]\( f(x) = \sin(x) \)[/tex] is the set of all real numbers [tex]\( y \)[/tex] such that [tex]\( -1 \leq y \leq 1 \)[/tex].
Given the options:
- The set of all real numbers [tex]\( -2\pi \leq y \leq 2\pi \)[/tex]
- The set of all real numbers [tex]\( -1 \leq y \leq 1 \)[/tex]
- The set of all real numbers [tex]\( 0 \leq y \leq 2\pi \)[/tex]
- The set of all real numbers
The correct answer is:
The set of all real numbers [tex]\( -1 \leq y \leq 1 \)[/tex]
The sine function, [tex]\( \sin(x) \)[/tex], is a periodic function that oscillates between a maximum value and a minimum value. To find these values, consider the general properties of the sine function:
- The sine function has a maximum value of 1.
- The sine function has a minimum value of -1.
These characteristics imply that the sine function will output values that are contained within and including these bounds.
Therefore, the range of the function [tex]\( f(x) = \sin(x) \)[/tex] is the set of all real numbers [tex]\( y \)[/tex] such that [tex]\( -1 \leq y \leq 1 \)[/tex].
Given the options:
- The set of all real numbers [tex]\( -2\pi \leq y \leq 2\pi \)[/tex]
- The set of all real numbers [tex]\( -1 \leq y \leq 1 \)[/tex]
- The set of all real numbers [tex]\( 0 \leq y \leq 2\pi \)[/tex]
- The set of all real numbers
The correct answer is:
The set of all real numbers [tex]\( -1 \leq y \leq 1 \)[/tex]
Answer:
B
Step-by-step explanation:
The function f(x) = sin(x) is a trigonometric function whose range is determined by the values that the sine function can take.
The sine function oscillates between -1 and 1 for all real numbers x.
Therefore, the correct answer is:
B. The set of all real numbers [tex]\(-1 \leq y \leq 1\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.