Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for matrix [tex]\(X\)[/tex] given that [tex]\(\frac{1}{2} X = A\)[/tex], where [tex]\(A = \left[\begin{array}{cc}6 & -12 \\ 4 & 8\end{array}\right]\)[/tex], we need to find a matrix [tex]\(X\)[/tex] such that when halved, equals matrix [tex]\(A\)[/tex].
Here’s a step-by-step approach:
1. Start with the equation [tex]\(\frac{1}{2} X = A\)[/tex].
2. To clear the fraction, multiply both sides of the equation by 2:
[tex]\[ X = 2A \][/tex]
3. Substitute the given matrix [tex]\(A\)[/tex] into the equation:
[tex]\[ X = 2 \left[\begin{array}{cc}6 & -12 \\ 4 & 8\end{array}\right] \][/tex]
4. Perform scalar multiplication by individually multiplying each element in matrix [tex]\(A\)[/tex] by 2:
[tex]\[ X = \left[\begin{array}{cc} 2 \cdot 6 & 2 \cdot (-12) \\ 2 \cdot 4 & 2 \cdot 8 \end{array}\right] \][/tex]
5. This results in:
[tex]\[ X = \left[\begin{array}{cc}12 & -24 \\ 8 & 16\end{array}\right] \][/tex]
So, matrix [tex]\(X\)[/tex], given [tex]\(\frac{1}{2} X = A\)[/tex], is:
[tex]\[ \left[\begin{array}{cc}12 & -24 \\ 8 & 16\end{array}\right]. \][/tex]
Thus, the correct answer from the options is:
[tex]\[ \left[\begin{array}{cc}12 & -24 \\ 8 & 16\end{array}\right]. \][/tex]
Here’s a step-by-step approach:
1. Start with the equation [tex]\(\frac{1}{2} X = A\)[/tex].
2. To clear the fraction, multiply both sides of the equation by 2:
[tex]\[ X = 2A \][/tex]
3. Substitute the given matrix [tex]\(A\)[/tex] into the equation:
[tex]\[ X = 2 \left[\begin{array}{cc}6 & -12 \\ 4 & 8\end{array}\right] \][/tex]
4. Perform scalar multiplication by individually multiplying each element in matrix [tex]\(A\)[/tex] by 2:
[tex]\[ X = \left[\begin{array}{cc} 2 \cdot 6 & 2 \cdot (-12) \\ 2 \cdot 4 & 2 \cdot 8 \end{array}\right] \][/tex]
5. This results in:
[tex]\[ X = \left[\begin{array}{cc}12 & -24 \\ 8 & 16\end{array}\right] \][/tex]
So, matrix [tex]\(X\)[/tex], given [tex]\(\frac{1}{2} X = A\)[/tex], is:
[tex]\[ \left[\begin{array}{cc}12 & -24 \\ 8 & 16\end{array}\right]. \][/tex]
Thus, the correct answer from the options is:
[tex]\[ \left[\begin{array}{cc}12 & -24 \\ 8 & 16\end{array}\right]. \][/tex]
Answer:
D
Step-by-step explanation:
Given the matrix  [tex]A = \left[\begin{array}{cc} 6 & -12 \\ 4 & 8 \end{array}\right][/tex]and the equation [tex]\frac{1}{2} X = A[/tex], we need to find matrix  X .
First, let's isolate  X  in the equation. Multiply both sides of the equation by 2:
X = 2A
Now, let's calculate  2A :
[tex]2 \times \left[\begin{array}{cc} 6 & -12 \\ 4 & 8 \end{array}\right] \\\\ \left[\begin{array}{cc} 2 \times 6 & 2 \times -12 \\ 2 \times 4 & 2 \times 8 \end{array}\right] \\\\\left[\begin{array}{cc} 12 & -24 \\ 8 & 16 \end{array}\right][/tex]
Therefore, the correct matrix  X  is:
D.[tex]\left[\begin{array}{cc} 12 & -24 \\ 8 & 16 \end{array}\right][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.