Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Evaluate the expression:

[tex]\[
\begin{aligned}
\sqrt{100} + 3^2 + \sqrt{16} & = 10 + 9 + 4 \\
& = 23
\end{aligned}
\][/tex]

Sagot :

Let's solve the given equation step-by-step:

[tex]\[ \sqrt{100} + 3^2 + \sqrt{16} = 50 + 9 + 4 \][/tex]

We will begin by evaluating each term on the left-hand side of the equation individually.

1. Calculate [tex]\( \sqrt{100} \)[/tex]:

[tex]\[ \sqrt{100} = 10.0 \][/tex]

2. Calculate [tex]\( 3^2 \)[/tex]:

[tex]\[ 3^2 = 9 \][/tex]

3. Calculate [tex]\( \sqrt{16} \)[/tex]:

[tex]\[ \sqrt{16} = 4.0 \][/tex]

Next, we sum these evaluated terms from the left-hand side of the equation:

[tex]\[ 10.0 + 9 + 4.0 = 23.0 \][/tex]

So, the left-hand side of the equation simplifies to [tex]\( 23.0 \)[/tex].

Now, let's consider the specific values provided on the right-hand side of the equation:

[tex]\[ 50 + 9 + 4 = 63 \][/tex]

We need to compare the two sides:

- Left side sum: [tex]\( 23.0 \)[/tex]
- Right side: [tex]\( 63 \)[/tex]

Clearly, the two sides are not equal:

[tex]\[ 23.0 \neq 63 \][/tex]

Therefore, the given equation [tex]\( \sqrt{100} + 3^2 + \sqrt{16} = 50 + 9 + 4 \)[/tex] does not hold true, as the left-hand side (23.0) is not equal to the right-hand side (63).