At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve a system of linear equations using Cramer's Rule, we use determinants to find the values of the unknowns. Let's go through the steps required for the given system of linear equations:
[tex]\[ \begin{array}{l} 10 x - y = 3 \\ 5 x - 2 y = -24 \end{array} \][/tex]
1. Step 1: Write the coefficient matrix [tex]\( A \)[/tex]
The coefficient matrix [tex]\( A \)[/tex] for the given system is:
[tex]\[ A = \begin{pmatrix} 10 & -1 \\ 5 & -2 \end{pmatrix} \][/tex]
2. Step 2: Calculate the determinant of [tex]\( A \)[/tex], denoted as [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = \begin{vmatrix} 10 & -1 \\ 5 & -2 \end{vmatrix} \][/tex]
3. Finding the determinant [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = (10 \times -2) - (-1 \times 5) = -20 + 5 = -15 \][/tex]
So, the determinant of [tex]\( A \)[/tex] is [tex]\( -15 \)[/tex].
4. Step 3: Replace the columns of [tex]\( A \)[/tex] with the constants column [tex]\([3, -24]^T\)[/tex] to solve for each variable
- To solve for [tex]\( x \)[/tex], replace the first column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_x = \begin{pmatrix} 3 & -1 \\ -24 & -2 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_x) \)[/tex].
- To solve for [tex]\( y \)[/tex], replace the second column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_y = \begin{pmatrix} 10 & 3 \\ 5 & -24 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_y) \)[/tex].
5. Step 4: Calculate the determinants [tex]\( \det(A_x) \)[/tex] and [tex]\( \det(A_y) \)[/tex]
- For [tex]\( \det(A_x) \)[/tex]:
[tex]\[ \det(A_x) = \begin{vmatrix} 3 & -1 \\ -24 & -2 \end{vmatrix} = (3 \times -2) - (-1 \times -24) = -6 - 24 = -30 \][/tex]
- For [tex]\( \det(A_y) \)[/tex]:
[tex]\[ \det(A_y) = \begin{vmatrix} 10 & 3 \\ 5 & -24 \end{vmatrix} = (10 \times -24) - (3 \times 5) = -240 - 15 = -255 \][/tex]
6. Step 5: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-30}{-15} = 2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-255}{-15} = 17 \][/tex]
From the steps outlined:
- The first determinant calculated is [tex]\(\det(A)\)[/tex].
- The second determinant calculated is [tex]\(\det(A_x)\)[/tex].
- The third determinant calculated is [tex]\(\det(A_y)\)[/tex].
Hence, the minimum number of determinants needed to solve for all unknowns in this system using Cramer's Rule is 3.
[tex]\[ \begin{array}{l} 10 x - y = 3 \\ 5 x - 2 y = -24 \end{array} \][/tex]
1. Step 1: Write the coefficient matrix [tex]\( A \)[/tex]
The coefficient matrix [tex]\( A \)[/tex] for the given system is:
[tex]\[ A = \begin{pmatrix} 10 & -1 \\ 5 & -2 \end{pmatrix} \][/tex]
2. Step 2: Calculate the determinant of [tex]\( A \)[/tex], denoted as [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = \begin{vmatrix} 10 & -1 \\ 5 & -2 \end{vmatrix} \][/tex]
3. Finding the determinant [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = (10 \times -2) - (-1 \times 5) = -20 + 5 = -15 \][/tex]
So, the determinant of [tex]\( A \)[/tex] is [tex]\( -15 \)[/tex].
4. Step 3: Replace the columns of [tex]\( A \)[/tex] with the constants column [tex]\([3, -24]^T\)[/tex] to solve for each variable
- To solve for [tex]\( x \)[/tex], replace the first column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_x = \begin{pmatrix} 3 & -1 \\ -24 & -2 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_x) \)[/tex].
- To solve for [tex]\( y \)[/tex], replace the second column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_y = \begin{pmatrix} 10 & 3 \\ 5 & -24 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_y) \)[/tex].
5. Step 4: Calculate the determinants [tex]\( \det(A_x) \)[/tex] and [tex]\( \det(A_y) \)[/tex]
- For [tex]\( \det(A_x) \)[/tex]:
[tex]\[ \det(A_x) = \begin{vmatrix} 3 & -1 \\ -24 & -2 \end{vmatrix} = (3 \times -2) - (-1 \times -24) = -6 - 24 = -30 \][/tex]
- For [tex]\( \det(A_y) \)[/tex]:
[tex]\[ \det(A_y) = \begin{vmatrix} 10 & 3 \\ 5 & -24 \end{vmatrix} = (10 \times -24) - (3 \times 5) = -240 - 15 = -255 \][/tex]
6. Step 5: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-30}{-15} = 2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-255}{-15} = 17 \][/tex]
From the steps outlined:
- The first determinant calculated is [tex]\(\det(A)\)[/tex].
- The second determinant calculated is [tex]\(\det(A_x)\)[/tex].
- The third determinant calculated is [tex]\(\det(A_y)\)[/tex].
Hence, the minimum number of determinants needed to solve for all unknowns in this system using Cramer's Rule is 3.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.