Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve a system of linear equations using Cramer's Rule, we use determinants to find the values of the unknowns. Let's go through the steps required for the given system of linear equations:
[tex]\[ \begin{array}{l} 10 x - y = 3 \\ 5 x - 2 y = -24 \end{array} \][/tex]
1. Step 1: Write the coefficient matrix [tex]\( A \)[/tex]
The coefficient matrix [tex]\( A \)[/tex] for the given system is:
[tex]\[ A = \begin{pmatrix} 10 & -1 \\ 5 & -2 \end{pmatrix} \][/tex]
2. Step 2: Calculate the determinant of [tex]\( A \)[/tex], denoted as [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = \begin{vmatrix} 10 & -1 \\ 5 & -2 \end{vmatrix} \][/tex]
3. Finding the determinant [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = (10 \times -2) - (-1 \times 5) = -20 + 5 = -15 \][/tex]
So, the determinant of [tex]\( A \)[/tex] is [tex]\( -15 \)[/tex].
4. Step 3: Replace the columns of [tex]\( A \)[/tex] with the constants column [tex]\([3, -24]^T\)[/tex] to solve for each variable
- To solve for [tex]\( x \)[/tex], replace the first column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_x = \begin{pmatrix} 3 & -1 \\ -24 & -2 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_x) \)[/tex].
- To solve for [tex]\( y \)[/tex], replace the second column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_y = \begin{pmatrix} 10 & 3 \\ 5 & -24 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_y) \)[/tex].
5. Step 4: Calculate the determinants [tex]\( \det(A_x) \)[/tex] and [tex]\( \det(A_y) \)[/tex]
- For [tex]\( \det(A_x) \)[/tex]:
[tex]\[ \det(A_x) = \begin{vmatrix} 3 & -1 \\ -24 & -2 \end{vmatrix} = (3 \times -2) - (-1 \times -24) = -6 - 24 = -30 \][/tex]
- For [tex]\( \det(A_y) \)[/tex]:
[tex]\[ \det(A_y) = \begin{vmatrix} 10 & 3 \\ 5 & -24 \end{vmatrix} = (10 \times -24) - (3 \times 5) = -240 - 15 = -255 \][/tex]
6. Step 5: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-30}{-15} = 2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-255}{-15} = 17 \][/tex]
From the steps outlined:
- The first determinant calculated is [tex]\(\det(A)\)[/tex].
- The second determinant calculated is [tex]\(\det(A_x)\)[/tex].
- The third determinant calculated is [tex]\(\det(A_y)\)[/tex].
Hence, the minimum number of determinants needed to solve for all unknowns in this system using Cramer's Rule is 3.
[tex]\[ \begin{array}{l} 10 x - y = 3 \\ 5 x - 2 y = -24 \end{array} \][/tex]
1. Step 1: Write the coefficient matrix [tex]\( A \)[/tex]
The coefficient matrix [tex]\( A \)[/tex] for the given system is:
[tex]\[ A = \begin{pmatrix} 10 & -1 \\ 5 & -2 \end{pmatrix} \][/tex]
2. Step 2: Calculate the determinant of [tex]\( A \)[/tex], denoted as [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = \begin{vmatrix} 10 & -1 \\ 5 & -2 \end{vmatrix} \][/tex]
3. Finding the determinant [tex]\( \det(A) \)[/tex]
[tex]\[ \det(A) = (10 \times -2) - (-1 \times 5) = -20 + 5 = -15 \][/tex]
So, the determinant of [tex]\( A \)[/tex] is [tex]\( -15 \)[/tex].
4. Step 3: Replace the columns of [tex]\( A \)[/tex] with the constants column [tex]\([3, -24]^T\)[/tex] to solve for each variable
- To solve for [tex]\( x \)[/tex], replace the first column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_x = \begin{pmatrix} 3 & -1 \\ -24 & -2 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_x) \)[/tex].
- To solve for [tex]\( y \)[/tex], replace the second column of [tex]\( A \)[/tex] with the constants column:
[tex]\[ A_y = \begin{pmatrix} 10 & 3 \\ 5 & -24 \end{pmatrix} \][/tex]
Then calculate [tex]\( \det(A_y) \)[/tex].
5. Step 4: Calculate the determinants [tex]\( \det(A_x) \)[/tex] and [tex]\( \det(A_y) \)[/tex]
- For [tex]\( \det(A_x) \)[/tex]:
[tex]\[ \det(A_x) = \begin{vmatrix} 3 & -1 \\ -24 & -2 \end{vmatrix} = (3 \times -2) - (-1 \times -24) = -6 - 24 = -30 \][/tex]
- For [tex]\( \det(A_y) \)[/tex]:
[tex]\[ \det(A_y) = \begin{vmatrix} 10 & 3 \\ 5 & -24 \end{vmatrix} = (10 \times -24) - (3 \times 5) = -240 - 15 = -255 \][/tex]
6. Step 5: Solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{-30}{-15} = 2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-255}{-15} = 17 \][/tex]
From the steps outlined:
- The first determinant calculated is [tex]\(\det(A)\)[/tex].
- The second determinant calculated is [tex]\(\det(A_x)\)[/tex].
- The third determinant calculated is [tex]\(\det(A_y)\)[/tex].
Hence, the minimum number of determinants needed to solve for all unknowns in this system using Cramer's Rule is 3.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.