Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's go through the proof step-by-step and fill in the missing reasons:
Given: [tex]\(4(x-2)=6x+18\)[/tex]
To prove: [tex]\(x=-13\)[/tex]
Starting with the proof:
1. [tex]\(4(x-2)=6x+18\)[/tex] - given
2. [tex]\(4x-8=6x+18\)[/tex] - distributive property
3. [tex]\(-2x-8=18\)[/tex] - subtraction property of equality (After subtracting [tex]\(6x\)[/tex] from both sides)
4. [tex]\(-2x=26\)[/tex] - addition property of equality (After adding 8 to both sides)
5. [tex]\(x=-13\)[/tex] - division property of equality (After dividing both sides by [tex]\(-2\)[/tex])
So, our complete table should be:
[tex]\[ \begin{tabular}{|c|c|} \hline Statements & Reasons \\ \hline 1. \(4(x-2)=6x+18\) & given \\ \hline 2. \(4x-8=6x+18\) & distributive property \\ \hline 3. \(-2x-8=18\) & subtraction property of equality \\ \hline 4. \(-2x=26\) & addition property of equality \\ \hline 5. \(x=-13\) & division property of equality \\ \hline \end{tabular} \][/tex]
Thus, the correct answer to fill in the blanks are:
- 3: subtraction property of equality
- 5: division property of equality
Given: [tex]\(4(x-2)=6x+18\)[/tex]
To prove: [tex]\(x=-13\)[/tex]
Starting with the proof:
1. [tex]\(4(x-2)=6x+18\)[/tex] - given
2. [tex]\(4x-8=6x+18\)[/tex] - distributive property
3. [tex]\(-2x-8=18\)[/tex] - subtraction property of equality (After subtracting [tex]\(6x\)[/tex] from both sides)
4. [tex]\(-2x=26\)[/tex] - addition property of equality (After adding 8 to both sides)
5. [tex]\(x=-13\)[/tex] - division property of equality (After dividing both sides by [tex]\(-2\)[/tex])
So, our complete table should be:
[tex]\[ \begin{tabular}{|c|c|} \hline Statements & Reasons \\ \hline 1. \(4(x-2)=6x+18\) & given \\ \hline 2. \(4x-8=6x+18\) & distributive property \\ \hline 3. \(-2x-8=18\) & subtraction property of equality \\ \hline 4. \(-2x=26\) & addition property of equality \\ \hline 5. \(x=-13\) & division property of equality \\ \hline \end{tabular} \][/tex]
Thus, the correct answer to fill in the blanks are:
- 3: subtraction property of equality
- 5: division property of equality
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.