Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the given system of linear equations using determinants, we can employ Cramer's Rule. The system of equations is:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.