Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given system of linear equations using determinants, we can employ Cramer's Rule. The system of equations is:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.