Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given system of linear equations using determinants, we can employ Cramer's Rule. The system of equations is:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.