Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the given system of linear equations using determinants, we can employ Cramer's Rule. The system of equations is:
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
[tex]\[ \begin{array}{l} -3x + 2y = -9 \\ 4x - 15y = -25 \end{array} \][/tex]
According to Cramer's Rule, we solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the following determinants:
1. Determinant of the Coefficient Matrix ([tex]\(|A|\)[/tex]):
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right| \][/tex]
2. Determinant of the Matrix for [tex]\(x\)[/tex] ([tex]\(|A_x|\)[/tex]):
[tex]\[ |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right| \][/tex]
3. Determinant of the Matrix for [tex]\(y\)[/tex] ([tex]\(|A_y|\)[/tex]):
[tex]\[ |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Using the determinant values you provided:
[tex]\[ |A| = 37.000000000000014 \][/tex]
[tex]\[ |A_x| = 184.99999999999991 \][/tex]
[tex]\[ |A_y| = 110.99999999999997 \][/tex]
We can now form the equations for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using Cramer's Rule:
[tex]\[ x = \frac{|A_x|}{|A|} \][/tex]
[tex]\[ y = \frac{|A_y|}{|A|} \][/tex]
Substituting the calculated determinants:
[tex]\[ x = \frac{184.99999999999991}{37.000000000000014} \][/tex]
[tex]\[ y = \frac{110.99999999999997}{37.000000000000014} \][/tex]
Upon simplifying these fractions, we get:
[tex]\[ x \approx 5 \][/tex]
[tex]\[ y \approx 3 \][/tex]
Therefore, the determinants that can be used to solve for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in this system of linear equations are:
[tex]\[ |A| = \left|\begin{array}{cc} -3 & 2 \\ 4 & -15 \end{array}\right|, \quad |A_x| = \left|\begin{array}{cc} -9 & 2 \\ -25 & -15 \end{array}\right|, \quad |A_y| = \left|\begin{array}{cc} -3 & -9 \\ 4 & -25 \end{array}\right| \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.