Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the system of linear equations:
[tex]\[ \begin{cases} -2x + 14y = 148 \\ 3x + 5y = 246 \end{cases} \][/tex]
we can use Cramer's Rule, which provides a straightforward way to solve for each variable. The general form of Cramer's Rule for a 2x2 system is:
[tex]\[ x = \frac{\Delta_x}{\Delta} \quad \text{and} \quad y = \frac{\Delta_y}{\Delta} \][/tex]
where [tex]\(\Delta\)[/tex] is the determinant of the coefficient matrix, [tex]\(\Delta_x\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(x\)[/tex]-column with the constants from the right-hand side, and [tex]\(\Delta_y\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(y\)[/tex]-column with the constants from the right-hand side.
Let's define the matrices involved:
1. The coefficient matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -2 & 14 \\ 3 & 5 \end{pmatrix} \][/tex]
2. The determinant [tex]\(\Delta\)[/tex] of matrix [tex]\(A\)[/tex]:
[tex]\[ \Delta = \left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right| = (-2 \cdot 5) - (14 \cdot 3) = -10 - 42 = -52 \][/tex]
3. The matrix [tex]\(B_1\)[/tex] to solve for [tex]\(x\)[/tex], replacing the first column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_1 = \begin{pmatrix} 148 & 14 \\ 246 & 5 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_x\)[/tex]:
[tex]\[ \Delta_x = \left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right| = (148 \cdot 5) - (14 \cdot 246) = 740 - 3444 = -2704 \][/tex]
4. The matrix [tex]\(B_2\)[/tex] to solve for [tex]\(y\)[/tex], replacing the second column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_2 = \begin{pmatrix} -2 & 148 \\ 3 & 246 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_y\)[/tex]:
[tex]\[ \Delta_y = \left| \begin{array}{cc} -2 & 148 \\ 3 & 246 \end{array} \right| = (-2 \cdot 246) - (148 \cdot 3) = -492 - 444 = -936 \][/tex]
Now, apply Cramer's Rule to find [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x = \frac{\Delta_x}{\Delta} = \frac{-2704}{-52} = 52 \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} = \frac{-936}{-52} = 18 \][/tex]
Thus, we can determine the [tex]\(x\)[/tex]-value of the solution to the system of linear equations using the equation:
[tex]\[ x = \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
Therefore, the equation that can be used to determine the [tex]\(x\)[/tex]-value of the solution is:
[tex]\[ \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
[tex]\[ \begin{cases} -2x + 14y = 148 \\ 3x + 5y = 246 \end{cases} \][/tex]
we can use Cramer's Rule, which provides a straightforward way to solve for each variable. The general form of Cramer's Rule for a 2x2 system is:
[tex]\[ x = \frac{\Delta_x}{\Delta} \quad \text{and} \quad y = \frac{\Delta_y}{\Delta} \][/tex]
where [tex]\(\Delta\)[/tex] is the determinant of the coefficient matrix, [tex]\(\Delta_x\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(x\)[/tex]-column with the constants from the right-hand side, and [tex]\(\Delta_y\)[/tex] is the determinant of the matrix formed by replacing the [tex]\(y\)[/tex]-column with the constants from the right-hand side.
Let's define the matrices involved:
1. The coefficient matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} -2 & 14 \\ 3 & 5 \end{pmatrix} \][/tex]
2. The determinant [tex]\(\Delta\)[/tex] of matrix [tex]\(A\)[/tex]:
[tex]\[ \Delta = \left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right| = (-2 \cdot 5) - (14 \cdot 3) = -10 - 42 = -52 \][/tex]
3. The matrix [tex]\(B_1\)[/tex] to solve for [tex]\(x\)[/tex], replacing the first column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_1 = \begin{pmatrix} 148 & 14 \\ 246 & 5 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_x\)[/tex]:
[tex]\[ \Delta_x = \left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right| = (148 \cdot 5) - (14 \cdot 246) = 740 - 3444 = -2704 \][/tex]
4. The matrix [tex]\(B_2\)[/tex] to solve for [tex]\(y\)[/tex], replacing the second column of [tex]\(A\)[/tex] with the constants:
[tex]\[ B_2 = \begin{pmatrix} -2 & 148 \\ 3 & 246 \end{pmatrix} \][/tex]
The determinant [tex]\(\Delta_y\)[/tex]:
[tex]\[ \Delta_y = \left| \begin{array}{cc} -2 & 148 \\ 3 & 246 \end{array} \right| = (-2 \cdot 246) - (148 \cdot 3) = -492 - 444 = -936 \][/tex]
Now, apply Cramer's Rule to find [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x = \frac{\Delta_x}{\Delta} = \frac{-2704}{-52} = 52 \][/tex]
[tex]\[ y = \frac{\Delta_y}{\Delta} = \frac{-936}{-52} = 18 \][/tex]
Thus, we can determine the [tex]\(x\)[/tex]-value of the solution to the system of linear equations using the equation:
[tex]\[ x = \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
Therefore, the equation that can be used to determine the [tex]\(x\)[/tex]-value of the solution is:
[tex]\[ \frac{\left| \begin{array}{cc} 148 & 14 \\ 246 & 5 \end{array} \right|}{\left| \begin{array}{cc} -2 & 14 \\ 3 & 5 \end{array} \right|} = 52 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.