Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given problems, we'll use the equation for the height of the object, which is [tex]\( h = -16t^2 + 194t + 15 \)[/tex]. We'll solve for specific values of [tex]\( t \)[/tex] in two scenarios: when the height [tex]\( h \)[/tex] is 413 feet and when the object reaches the ground (i.e., the height [tex]\( h = 0 \)[/tex]).
### 1. Finding when the height will be 413 feet:
We start by setting the height [tex]\( h \)[/tex] to 413 feet and solve for [tex]\( t \)[/tex] in the equation:
[tex]\[ 413 = -16t^2 + 194t + 15 \][/tex]
Rearranging the equation to bring all terms to one side, we get:
[tex]\[ -16t^2 + 194t + 15 - 413 = 0 \][/tex]
[tex]\[ -16t^2 + 194t - 398 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 194 \)[/tex], and [tex]\( c = -398 \)[/tex]. Solving this quadratic equation using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(-398)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 - 25472}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{12164}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 110.3126}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 110.3126}{-32} = \frac{-83.6874}{-32} = 2.615 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 110.3126}{-32} = \frac{-304.3126}{-32} = 9.510 \text{ seconds} \][/tex]
So, the height will be 413 feet at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
### 2. Finding when the object will reach the ground:
To determine when the object reaches the ground, we set the height [tex]\( h \)[/tex] to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 194t + 15 \][/tex]
This is again a quadratic equation. Solving for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(15)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 + 960}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{38596}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 196.4533}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 196.4533}{-32} = \frac{2.4533}{-32} = -0.077 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 196.4533}{-32} = \frac{-390.4533}{-32} = 12.202 \text{ seconds} \][/tex]
Therefore, because time cannot be negative, the object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### Summary:
- The object will be 413 feet high at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
- The object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### 1. Finding when the height will be 413 feet:
We start by setting the height [tex]\( h \)[/tex] to 413 feet and solve for [tex]\( t \)[/tex] in the equation:
[tex]\[ 413 = -16t^2 + 194t + 15 \][/tex]
Rearranging the equation to bring all terms to one side, we get:
[tex]\[ -16t^2 + 194t + 15 - 413 = 0 \][/tex]
[tex]\[ -16t^2 + 194t - 398 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 194 \)[/tex], and [tex]\( c = -398 \)[/tex]. Solving this quadratic equation using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(-398)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 - 25472}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{12164}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 110.3126}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 110.3126}{-32} = \frac{-83.6874}{-32} = 2.615 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 110.3126}{-32} = \frac{-304.3126}{-32} = 9.510 \text{ seconds} \][/tex]
So, the height will be 413 feet at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
### 2. Finding when the object will reach the ground:
To determine when the object reaches the ground, we set the height [tex]\( h \)[/tex] to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 194t + 15 \][/tex]
This is again a quadratic equation. Solving for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(15)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 + 960}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{38596}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 196.4533}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 196.4533}{-32} = \frac{2.4533}{-32} = -0.077 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 196.4533}{-32} = \frac{-390.4533}{-32} = 12.202 \text{ seconds} \][/tex]
Therefore, because time cannot be negative, the object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### Summary:
- The object will be 413 feet high at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
- The object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.