Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given problems, we'll use the equation for the height of the object, which is [tex]\( h = -16t^2 + 194t + 15 \)[/tex]. We'll solve for specific values of [tex]\( t \)[/tex] in two scenarios: when the height [tex]\( h \)[/tex] is 413 feet and when the object reaches the ground (i.e., the height [tex]\( h = 0 \)[/tex]).
### 1. Finding when the height will be 413 feet:
We start by setting the height [tex]\( h \)[/tex] to 413 feet and solve for [tex]\( t \)[/tex] in the equation:
[tex]\[ 413 = -16t^2 + 194t + 15 \][/tex]
Rearranging the equation to bring all terms to one side, we get:
[tex]\[ -16t^2 + 194t + 15 - 413 = 0 \][/tex]
[tex]\[ -16t^2 + 194t - 398 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 194 \)[/tex], and [tex]\( c = -398 \)[/tex]. Solving this quadratic equation using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(-398)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 - 25472}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{12164}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 110.3126}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 110.3126}{-32} = \frac{-83.6874}{-32} = 2.615 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 110.3126}{-32} = \frac{-304.3126}{-32} = 9.510 \text{ seconds} \][/tex]
So, the height will be 413 feet at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
### 2. Finding when the object will reach the ground:
To determine when the object reaches the ground, we set the height [tex]\( h \)[/tex] to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 194t + 15 \][/tex]
This is again a quadratic equation. Solving for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(15)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 + 960}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{38596}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 196.4533}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 196.4533}{-32} = \frac{2.4533}{-32} = -0.077 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 196.4533}{-32} = \frac{-390.4533}{-32} = 12.202 \text{ seconds} \][/tex]
Therefore, because time cannot be negative, the object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### Summary:
- The object will be 413 feet high at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
- The object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### 1. Finding when the height will be 413 feet:
We start by setting the height [tex]\( h \)[/tex] to 413 feet and solve for [tex]\( t \)[/tex] in the equation:
[tex]\[ 413 = -16t^2 + 194t + 15 \][/tex]
Rearranging the equation to bring all terms to one side, we get:
[tex]\[ -16t^2 + 194t + 15 - 413 = 0 \][/tex]
[tex]\[ -16t^2 + 194t - 398 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 194 \)[/tex], and [tex]\( c = -398 \)[/tex]. Solving this quadratic equation using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(-398)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 - 25472}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{12164}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 110.3126}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 110.3126}{-32} = \frac{-83.6874}{-32} = 2.615 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 110.3126}{-32} = \frac{-304.3126}{-32} = 9.510 \text{ seconds} \][/tex]
So, the height will be 413 feet at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
### 2. Finding when the object will reach the ground:
To determine when the object reaches the ground, we set the height [tex]\( h \)[/tex] to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 194t + 15 \][/tex]
This is again a quadratic equation. Solving for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(15)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 + 960}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{38596}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 196.4533}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 196.4533}{-32} = \frac{2.4533}{-32} = -0.077 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 196.4533}{-32} = \frac{-390.4533}{-32} = 12.202 \text{ seconds} \][/tex]
Therefore, because time cannot be negative, the object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### Summary:
- The object will be 413 feet high at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
- The object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.