At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given problems, we'll use the equation for the height of the object, which is [tex]\( h = -16t^2 + 194t + 15 \)[/tex]. We'll solve for specific values of [tex]\( t \)[/tex] in two scenarios: when the height [tex]\( h \)[/tex] is 413 feet and when the object reaches the ground (i.e., the height [tex]\( h = 0 \)[/tex]).
### 1. Finding when the height will be 413 feet:
We start by setting the height [tex]\( h \)[/tex] to 413 feet and solve for [tex]\( t \)[/tex] in the equation:
[tex]\[ 413 = -16t^2 + 194t + 15 \][/tex]
Rearranging the equation to bring all terms to one side, we get:
[tex]\[ -16t^2 + 194t + 15 - 413 = 0 \][/tex]
[tex]\[ -16t^2 + 194t - 398 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 194 \)[/tex], and [tex]\( c = -398 \)[/tex]. Solving this quadratic equation using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(-398)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 - 25472}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{12164}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 110.3126}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 110.3126}{-32} = \frac{-83.6874}{-32} = 2.615 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 110.3126}{-32} = \frac{-304.3126}{-32} = 9.510 \text{ seconds} \][/tex]
So, the height will be 413 feet at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
### 2. Finding when the object will reach the ground:
To determine when the object reaches the ground, we set the height [tex]\( h \)[/tex] to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 194t + 15 \][/tex]
This is again a quadratic equation. Solving for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(15)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 + 960}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{38596}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 196.4533}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 196.4533}{-32} = \frac{2.4533}{-32} = -0.077 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 196.4533}{-32} = \frac{-390.4533}{-32} = 12.202 \text{ seconds} \][/tex]
Therefore, because time cannot be negative, the object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### Summary:
- The object will be 413 feet high at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
- The object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### 1. Finding when the height will be 413 feet:
We start by setting the height [tex]\( h \)[/tex] to 413 feet and solve for [tex]\( t \)[/tex] in the equation:
[tex]\[ 413 = -16t^2 + 194t + 15 \][/tex]
Rearranging the equation to bring all terms to one side, we get:
[tex]\[ -16t^2 + 194t + 15 - 413 = 0 \][/tex]
[tex]\[ -16t^2 + 194t - 398 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 194 \)[/tex], and [tex]\( c = -398 \)[/tex]. Solving this quadratic equation using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(-398)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 - 25472}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{12164}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 110.3126}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 110.3126}{-32} = \frac{-83.6874}{-32} = 2.615 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 110.3126}{-32} = \frac{-304.3126}{-32} = 9.510 \text{ seconds} \][/tex]
So, the height will be 413 feet at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
### 2. Finding when the object will reach the ground:
To determine when the object reaches the ground, we set the height [tex]\( h \)[/tex] to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 194t + 15 \][/tex]
This is again a quadratic equation. Solving for [tex]\( t \)[/tex] using the quadratic formula:
[tex]\[ t = \frac{-194 \pm \sqrt{194^2 - 4(-16)(15)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{37636 + 960}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm \sqrt{38596}}{-32} \][/tex]
[tex]\[ t = \frac{-194 \pm 196.4533}{-32} \][/tex]
This gives us two solutions:
[tex]\[ t_1 = \frac{-194 + 196.4533}{-32} = \frac{2.4533}{-32} = -0.077 \text{ seconds} \][/tex]
[tex]\[ t_2 = \frac{-194 - 196.4533}{-32} = \frac{-390.4533}{-32} = 12.202 \text{ seconds} \][/tex]
Therefore, because time cannot be negative, the object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
### Summary:
- The object will be 413 feet high at approximately [tex]\( 2.615 \)[/tex] seconds and [tex]\( 9.510 \)[/tex] seconds.
- The object will reach the ground at approximately [tex]\( 12.202 \)[/tex] seconds.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.