At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Using Cramer's rule, what is the value of [tex] x [/tex] in the solution to the system of linear equations below?

[tex]\[
\begin{array}{l}
-\frac{1}{2} x + 3 y = -4 \\
-x - y = -1
\end{array}
\][/tex]

A. -2
B. -1
C. [tex]\(\frac{1}{2}\)[/tex]
D. 2


Sagot :

Certainly! Let's solve the system of linear equations using Cramer's rule.

The given system of equations is:
[tex]\[ \begin{align*} -\frac{1}{2} x + 3y &= -4 \\ -x - y &= -1 \end{align*} \][/tex]

### Step-by-Step Solution

1. Form the coefficient matrix [tex]\( A \)[/tex]:
The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are taken to form matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} -\frac{1}{2} & 3 \\ -1 & -1 \end{pmatrix} \][/tex]

2. Form the constant matrix [tex]\( B \)[/tex]:
The constants on the right side of the equations make up matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \][/tex]

3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A) = \left(-\frac{1}{2}\right) \cdot (-1) - 3 \cdot (-1) = \frac{1}{2} + 3 = 3.5 \][/tex]

4. Form the matrix [tex]\( A_x \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -4 & 3 \\ -1 & -1 \end{pmatrix} \][/tex]

5. Calculate the determinant of [tex]\( A_x \)[/tex]:
The determinant [tex]\( \text{det}(A_x) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A_x) = (-4) \cdot (-1) - 3 \cdot (-1) = 4 + 3 = 7 \][/tex]

6. Solve for [tex]\( x \)[/tex] using Cramer's rule:
According to Cramer's rule, the solution for [tex]\( x \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{7}{3.5} = 2 \][/tex]

Thus, the value of [tex]\( x \)[/tex] in the solution to the system of linear equations is [tex]\( \boxed{2} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.