Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the system of linear equations using Cramer's rule.
The given system of equations is:
[tex]\[ \begin{align*} -\frac{1}{2} x + 3y &= -4 \\ -x - y &= -1 \end{align*} \][/tex]
### Step-by-Step Solution
1. Form the coefficient matrix [tex]\( A \)[/tex]:
The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are taken to form matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} -\frac{1}{2} & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
2. Form the constant matrix [tex]\( B \)[/tex]:
The constants on the right side of the equations make up matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A) = \left(-\frac{1}{2}\right) \cdot (-1) - 3 \cdot (-1) = \frac{1}{2} + 3 = 3.5 \][/tex]
4. Form the matrix [tex]\( A_x \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -4 & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
5. Calculate the determinant of [tex]\( A_x \)[/tex]:
The determinant [tex]\( \text{det}(A_x) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A_x) = (-4) \cdot (-1) - 3 \cdot (-1) = 4 + 3 = 7 \][/tex]
6. Solve for [tex]\( x \)[/tex] using Cramer's rule:
According to Cramer's rule, the solution for [tex]\( x \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{7}{3.5} = 2 \][/tex]
Thus, the value of [tex]\( x \)[/tex] in the solution to the system of linear equations is [tex]\( \boxed{2} \)[/tex].
The given system of equations is:
[tex]\[ \begin{align*} -\frac{1}{2} x + 3y &= -4 \\ -x - y &= -1 \end{align*} \][/tex]
### Step-by-Step Solution
1. Form the coefficient matrix [tex]\( A \)[/tex]:
The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are taken to form matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} -\frac{1}{2} & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
2. Form the constant matrix [tex]\( B \)[/tex]:
The constants on the right side of the equations make up matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A) = \left(-\frac{1}{2}\right) \cdot (-1) - 3 \cdot (-1) = \frac{1}{2} + 3 = 3.5 \][/tex]
4. Form the matrix [tex]\( A_x \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -4 & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
5. Calculate the determinant of [tex]\( A_x \)[/tex]:
The determinant [tex]\( \text{det}(A_x) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A_x) = (-4) \cdot (-1) - 3 \cdot (-1) = 4 + 3 = 7 \][/tex]
6. Solve for [tex]\( x \)[/tex] using Cramer's rule:
According to Cramer's rule, the solution for [tex]\( x \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{7}{3.5} = 2 \][/tex]
Thus, the value of [tex]\( x \)[/tex] in the solution to the system of linear equations is [tex]\( \boxed{2} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.