Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the system of linear equations using Cramer's rule.
The given system of equations is:
[tex]\[ \begin{align*} -\frac{1}{2} x + 3y &= -4 \\ -x - y &= -1 \end{align*} \][/tex]
### Step-by-Step Solution
1. Form the coefficient matrix [tex]\( A \)[/tex]:
The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are taken to form matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} -\frac{1}{2} & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
2. Form the constant matrix [tex]\( B \)[/tex]:
The constants on the right side of the equations make up matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A) = \left(-\frac{1}{2}\right) \cdot (-1) - 3 \cdot (-1) = \frac{1}{2} + 3 = 3.5 \][/tex]
4. Form the matrix [tex]\( A_x \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -4 & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
5. Calculate the determinant of [tex]\( A_x \)[/tex]:
The determinant [tex]\( \text{det}(A_x) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A_x) = (-4) \cdot (-1) - 3 \cdot (-1) = 4 + 3 = 7 \][/tex]
6. Solve for [tex]\( x \)[/tex] using Cramer's rule:
According to Cramer's rule, the solution for [tex]\( x \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{7}{3.5} = 2 \][/tex]
Thus, the value of [tex]\( x \)[/tex] in the solution to the system of linear equations is [tex]\( \boxed{2} \)[/tex].
The given system of equations is:
[tex]\[ \begin{align*} -\frac{1}{2} x + 3y &= -4 \\ -x - y &= -1 \end{align*} \][/tex]
### Step-by-Step Solution
1. Form the coefficient matrix [tex]\( A \)[/tex]:
The coefficients of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are taken to form matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} -\frac{1}{2} & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
2. Form the constant matrix [tex]\( B \)[/tex]:
The constants on the right side of the equations make up matrix [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \][/tex]
3. Calculate the determinant of the coefficient matrix [tex]\( A \)[/tex]:
The determinant [tex]\( \text{det}(A) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A) = \left(-\frac{1}{2}\right) \cdot (-1) - 3 \cdot (-1) = \frac{1}{2} + 3 = 3.5 \][/tex]
4. Form the matrix [tex]\( A_x \)[/tex] by replacing the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_x = \begin{pmatrix} -4 & 3 \\ -1 & -1 \end{pmatrix} \][/tex]
5. Calculate the determinant of [tex]\( A_x \)[/tex]:
The determinant [tex]\( \text{det}(A_x) \)[/tex] is calculated as follows:
[tex]\[ \text{det}(A_x) = (-4) \cdot (-1) - 3 \cdot (-1) = 4 + 3 = 7 \][/tex]
6. Solve for [tex]\( x \)[/tex] using Cramer's rule:
According to Cramer's rule, the solution for [tex]\( x \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{7}{3.5} = 2 \][/tex]
Thus, the value of [tex]\( x \)[/tex] in the solution to the system of linear equations is [tex]\( \boxed{2} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.