Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for [tex]\( n \)[/tex] in the limit problem [tex]\(\operatorname{Lt}_{x \rightarrow 2} \frac{x^n - 2^n}{x - 2} = 80\)[/tex], let's break it down step-by-step.
1. Understand the Limit Expression:
[tex]\[ \operatorname{Lt}_{x \rightarrow 2} \frac{x^n - 2^n}{x - 2} \][/tex]
As [tex]\( x \)[/tex] approaches 2, the expression [tex]\(\frac{x^n - 2^n}{x - 2}\)[/tex] resembles the difference quotient, which is often used to find derivatives.
2. Simplify Using L'Hôpital's Rule:
Since directly substituting [tex]\( x = 2 \)[/tex] results in the form [tex]\(\frac{0}{0}\)[/tex], we can apply L'Hôpital's rule. This rule states that:
[tex]\[ \operatorname{Lt}_{x \rightarrow c} \frac{f(x)}{g(x)} = \operatorname{Lt}_{x \rightarrow c} \frac{f'(x)}{g'(x)} \quad \text{if the limit is of the form} \quad \frac{0}{0} \text{ or } \frac{\infty}{\infty} \][/tex]
In our case:
[tex]\[ f(x) = x^n - 2^n \quad \text{and} \quad g(x) = x - 2 \][/tex]
3. Differentiate the Numerator and Denominator:
[tex]\[ f'(x) = \frac{d}{dx} (x^n - 2^n) = nx^{n-1} \][/tex]
(Note that [tex]\( 2^n \)[/tex] is a constant with respect to [tex]\( x \)[/tex], so its derivative is 0)
[tex]\[ g'(x) = \frac{d}{dx} (x - 2) = 1 \][/tex]
4. Apply L'Hôpital's Rule:
[tex]\[ \operatorname{Lt}_{x \rightarrow 2} \frac{x^n - 2^n}{x - 2} = \operatorname{Lt}_{x \rightarrow 2} \frac{nx^{n-1}}{1} = n \cdot 2^{n-1} \][/tex]
5. Set the Limit Equal to 80:
According to the given condition:
[tex]\[ n \cdot 2^{n-1} = 80 \][/tex]
6. Solve for [tex]\( n \)[/tex]:
Let's find an integer [tex]\( n \)[/tex] that satisfies this equation:
[tex]\[ n \cdot 2^{n-1} = 80 \][/tex]
Try different integer values for [tex]\( n \)[/tex]:
For [tex]\( n = 4 \)[/tex]:
[tex]\[ 4 \cdot 2^{4-1} = 4 \cdot 2^3 = 4 \cdot 8 = 32 \quad (\text{Not } 80) \][/tex]
For [tex]\( n = 5 \)[/tex]:
[tex]\[ 5 \cdot 2^{5-1} = 5 \cdot 2^4 = 5 \cdot 16 = 80 \quad (\text{Correct}) \][/tex]
Therefore, [tex]\( n = 5 \)[/tex] is the correct value.
7. Conclusion:
[tex]\[ n = 5 \][/tex]
Thus, the value of [tex]\( n \)[/tex] that satisfies the given limit equation is [tex]\( \boxed{5} \)[/tex].
1. Understand the Limit Expression:
[tex]\[ \operatorname{Lt}_{x \rightarrow 2} \frac{x^n - 2^n}{x - 2} \][/tex]
As [tex]\( x \)[/tex] approaches 2, the expression [tex]\(\frac{x^n - 2^n}{x - 2}\)[/tex] resembles the difference quotient, which is often used to find derivatives.
2. Simplify Using L'Hôpital's Rule:
Since directly substituting [tex]\( x = 2 \)[/tex] results in the form [tex]\(\frac{0}{0}\)[/tex], we can apply L'Hôpital's rule. This rule states that:
[tex]\[ \operatorname{Lt}_{x \rightarrow c} \frac{f(x)}{g(x)} = \operatorname{Lt}_{x \rightarrow c} \frac{f'(x)}{g'(x)} \quad \text{if the limit is of the form} \quad \frac{0}{0} \text{ or } \frac{\infty}{\infty} \][/tex]
In our case:
[tex]\[ f(x) = x^n - 2^n \quad \text{and} \quad g(x) = x - 2 \][/tex]
3. Differentiate the Numerator and Denominator:
[tex]\[ f'(x) = \frac{d}{dx} (x^n - 2^n) = nx^{n-1} \][/tex]
(Note that [tex]\( 2^n \)[/tex] is a constant with respect to [tex]\( x \)[/tex], so its derivative is 0)
[tex]\[ g'(x) = \frac{d}{dx} (x - 2) = 1 \][/tex]
4. Apply L'Hôpital's Rule:
[tex]\[ \operatorname{Lt}_{x \rightarrow 2} \frac{x^n - 2^n}{x - 2} = \operatorname{Lt}_{x \rightarrow 2} \frac{nx^{n-1}}{1} = n \cdot 2^{n-1} \][/tex]
5. Set the Limit Equal to 80:
According to the given condition:
[tex]\[ n \cdot 2^{n-1} = 80 \][/tex]
6. Solve for [tex]\( n \)[/tex]:
Let's find an integer [tex]\( n \)[/tex] that satisfies this equation:
[tex]\[ n \cdot 2^{n-1} = 80 \][/tex]
Try different integer values for [tex]\( n \)[/tex]:
For [tex]\( n = 4 \)[/tex]:
[tex]\[ 4 \cdot 2^{4-1} = 4 \cdot 2^3 = 4 \cdot 8 = 32 \quad (\text{Not } 80) \][/tex]
For [tex]\( n = 5 \)[/tex]:
[tex]\[ 5 \cdot 2^{5-1} = 5 \cdot 2^4 = 5 \cdot 16 = 80 \quad (\text{Correct}) \][/tex]
Therefore, [tex]\( n = 5 \)[/tex] is the correct value.
7. Conclusion:
[tex]\[ n = 5 \][/tex]
Thus, the value of [tex]\( n \)[/tex] that satisfies the given limit equation is [tex]\( \boxed{5} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.