Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

What is the degree of the simplest polynomial with integer coefficients that has [tex]\sqrt{2}, 2[/tex], and [tex]2 + 2i[/tex] as some of its zeros?

A. 4
B. 3
C. 5
D. 6


Sagot :

To determine the degree of the simplest polynomial with integer coefficients that has [tex]\(\sqrt{2}\)[/tex], 2, and [tex]\(2 + 2i\)[/tex] as some of its zeros, it is essential to also include the complex conjugates and pairs required by polynomials with real coefficients. Here's a detailed, step-by-step solution:

1. Identify the given zeros:
- [tex]\(\sqrt{2}\)[/tex]
- 2
- [tex]\(2 + 2i\)[/tex]

2. Include the complex conjugate:
- For any complex root [tex]\(a + bi\)[/tex], where [tex]\(b \neq 0\)[/tex], the complex conjugate [tex]\(a - bi\)[/tex] must also be a root if the polynomial has real coefficients.
- Thus, if [tex]\(2 + 2i\)[/tex] is a root, its complex conjugate [tex]\(2 - 2i\)[/tex] must also be a root.

3. Include the conjugate for the irrational root:
- For any irrational root, such as [tex]\(\sqrt{2}\)[/tex], its conjugate [tex]\(-\sqrt{2}\)[/tex] must also be a root to ensure that all coefficients of the polynomial are integers.

4. List all the necessary zeros:
- [tex]\(\sqrt{2}\)[/tex]
- [tex]\(-\sqrt{2}\)[/tex]
- 2
- [tex]\(2 + 2i\)[/tex]
- [tex]\(2 - 2i\)[/tex]

5. Count the total number of different zeros:
- [tex]\(\sqrt{2}\)[/tex]
- [tex]\(-\sqrt{2}\)[/tex]
- 2
- [tex]\(2 + 2i\)[/tex]
- [tex]\(2 - 2i\)[/tex]

6. Determine the degree of the polynomial:
- The polynomial must include all these five roots to ensure it satisfies the given conditions.
- Hence, a polynomial with these 5 zeros will be of at least degree 5.

Thus, the degree of the simplest polynomial with integer coefficients that has [tex]\(\sqrt{2}, 2\)[/tex], and [tex]\(2 + 2i\)[/tex] as some of its zeros must be 5.

The correct answer is: 5