Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which inequality has an open circle when it is graphed on a number line, let's analyze each inequality and identify whether it uses an open or a closed circle.
1. [tex]\( x > \frac{3}{5} \)[/tex]:
- The inequality [tex]\( x > \frac{3}{5} \)[/tex] tells us that [tex]\( x \)[/tex] is greater than [tex]\( \frac{3}{5} \)[/tex].
- When graphed on a number line, an open circle is used at [tex]\( \frac{3}{5} \)[/tex] to indicate that [tex]\( \frac{3}{5} \)[/tex] is not included in the solution set.
2. [tex]\( \frac{4}{7} \geq x \)[/tex]:
- The inequality [tex]\( \frac{4}{7} \geq x \)[/tex] tells us that [tex]\( \frac{4}{7} \)[/tex] is greater than or equal to [tex]\( x \)[/tex].
- When graphed on a number line, a closed circle is used at [tex]\( \frac{4}{7} \)[/tex] to indicate that [tex]\( \frac{4}{7} \)[/tex] is included in the solution set.
3. [tex]\( x \leq 12 \)[/tex]:
- The inequality [tex]\( x \leq 12 \)[/tex] tells us that [tex]\( x \)[/tex] is less than or equal to 12.
- When graphed on a number line, a closed circle is used at 12 to indicate that 12 is included in the solution set.
4. [tex]\( x \geq -6 \)[/tex]:
- The inequality [tex]\( x \geq -6 \)[/tex] tells us that [tex]\( x \)[/tex] is greater than or equal to -6.
- When graphed on a number line, a closed circle is used at -6 to indicate that -6 is included in the solution set.
Based on this analysis, the inequality that uses an open circle when it is graphed on a number line is:
[tex]\[ x > \frac{3}{5} \][/tex]
The first inequality, [tex]\( x > \frac{3}{5} \)[/tex], has an open circle.
1. [tex]\( x > \frac{3}{5} \)[/tex]:
- The inequality [tex]\( x > \frac{3}{5} \)[/tex] tells us that [tex]\( x \)[/tex] is greater than [tex]\( \frac{3}{5} \)[/tex].
- When graphed on a number line, an open circle is used at [tex]\( \frac{3}{5} \)[/tex] to indicate that [tex]\( \frac{3}{5} \)[/tex] is not included in the solution set.
2. [tex]\( \frac{4}{7} \geq x \)[/tex]:
- The inequality [tex]\( \frac{4}{7} \geq x \)[/tex] tells us that [tex]\( \frac{4}{7} \)[/tex] is greater than or equal to [tex]\( x \)[/tex].
- When graphed on a number line, a closed circle is used at [tex]\( \frac{4}{7} \)[/tex] to indicate that [tex]\( \frac{4}{7} \)[/tex] is included in the solution set.
3. [tex]\( x \leq 12 \)[/tex]:
- The inequality [tex]\( x \leq 12 \)[/tex] tells us that [tex]\( x \)[/tex] is less than or equal to 12.
- When graphed on a number line, a closed circle is used at 12 to indicate that 12 is included in the solution set.
4. [tex]\( x \geq -6 \)[/tex]:
- The inequality [tex]\( x \geq -6 \)[/tex] tells us that [tex]\( x \)[/tex] is greater than or equal to -6.
- When graphed on a number line, a closed circle is used at -6 to indicate that -6 is included in the solution set.
Based on this analysis, the inequality that uses an open circle when it is graphed on a number line is:
[tex]\[ x > \frac{3}{5} \][/tex]
The first inequality, [tex]\( x > \frac{3}{5} \)[/tex], has an open circle.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.