Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's address the problem piece by piece.
### Part A: Determine the Type of Function (Linear or Exponential)
House 1:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]294,580, [tex]$303,417.40, and $[/tex]312,519.92.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{303,417.40}{294,580} \approx 1.030$[/tex]
- Year 2 to Year 3: [tex]$\frac{312,519.92}{303,417.40} \approx 1.030$[/tex]
- Since the growth rate is consistent, the values suggest an exponential function.
House 2:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]295,000, [tex]$304,000, and $[/tex]313,000.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{304,000}{295,000} \approx 1.0305$[/tex]
- Year 2 to Year 3: [tex]$\frac{313,000}{304,000} \approx 1.0296$[/tex]
- Although there's a slight variation, it maintains an approximate linear growth rate. Examining differences:
- Year 1 to Year 2: [tex]$304,000 - 295,000 = 9,000$[/tex]
- Year 2 to Year 3: [tex]$313,000 - 304,000 = 9,000$[/tex]
- Since the differences are consistent, the trend suggests a linear function.
### Part B: Write Functions Describing Each House's Value
House 1:
- The growth rate, calculated approximately as 1.03, showcases exponential growth:
[tex]\[ f_1(x) = 286,000 \times (1.03)^x \][/tex]
House 2:
- The consistent increase of \[tex]$9,000 per year describes linear growth: \[ f_2(x) = 286,000 + 9,000x \] ### Part C: Value of Each House After 25 Years House 1: \[ f_1(25) = 286,000 \times (1.03)^{25} \] Calculate: \[ (1.03)^{25} \approx 2.093 \, \text{(using a calculator)} \] Hence, \[ f_1(25) = 286,000 \times 2.093 \approx 598,598 \] House 2: \[ f_2(25) = 286,000 + 9,000 \times 25 \] Calculate: \[ 9,000 \times 25 = 225,000 \] Hence, \[ f_2(25) = 286,000 + 225,000 = 511,000 \] ### Conclusion Belinda should purchase House 1, as its projected value after 25 years ($[/tex]598,598[tex]$) is higher than that of House 2 ($[/tex]511,000$). The exponential growth of House 1 leads to a significantly higher value in the long term.
### Part A: Determine the Type of Function (Linear or Exponential)
House 1:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]294,580, [tex]$303,417.40, and $[/tex]312,519.92.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{303,417.40}{294,580} \approx 1.030$[/tex]
- Year 2 to Year 3: [tex]$\frac{312,519.92}{303,417.40} \approx 1.030$[/tex]
- Since the growth rate is consistent, the values suggest an exponential function.
House 2:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]295,000, [tex]$304,000, and $[/tex]313,000.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{304,000}{295,000} \approx 1.0305$[/tex]
- Year 2 to Year 3: [tex]$\frac{313,000}{304,000} \approx 1.0296$[/tex]
- Although there's a slight variation, it maintains an approximate linear growth rate. Examining differences:
- Year 1 to Year 2: [tex]$304,000 - 295,000 = 9,000$[/tex]
- Year 2 to Year 3: [tex]$313,000 - 304,000 = 9,000$[/tex]
- Since the differences are consistent, the trend suggests a linear function.
### Part B: Write Functions Describing Each House's Value
House 1:
- The growth rate, calculated approximately as 1.03, showcases exponential growth:
[tex]\[ f_1(x) = 286,000 \times (1.03)^x \][/tex]
House 2:
- The consistent increase of \[tex]$9,000 per year describes linear growth: \[ f_2(x) = 286,000 + 9,000x \] ### Part C: Value of Each House After 25 Years House 1: \[ f_1(25) = 286,000 \times (1.03)^{25} \] Calculate: \[ (1.03)^{25} \approx 2.093 \, \text{(using a calculator)} \] Hence, \[ f_1(25) = 286,000 \times 2.093 \approx 598,598 \] House 2: \[ f_2(25) = 286,000 + 9,000 \times 25 \] Calculate: \[ 9,000 \times 25 = 225,000 \] Hence, \[ f_2(25) = 286,000 + 225,000 = 511,000 \] ### Conclusion Belinda should purchase House 1, as its projected value after 25 years ($[/tex]598,598[tex]$) is higher than that of House 2 ($[/tex]511,000$). The exponential growth of House 1 leads to a significantly higher value in the long term.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.