At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's address the problem piece by piece.
### Part A: Determine the Type of Function (Linear or Exponential)
House 1:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]294,580, [tex]$303,417.40, and $[/tex]312,519.92.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{303,417.40}{294,580} \approx 1.030$[/tex]
- Year 2 to Year 3: [tex]$\frac{312,519.92}{303,417.40} \approx 1.030$[/tex]
- Since the growth rate is consistent, the values suggest an exponential function.
House 2:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]295,000, [tex]$304,000, and $[/tex]313,000.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{304,000}{295,000} \approx 1.0305$[/tex]
- Year 2 to Year 3: [tex]$\frac{313,000}{304,000} \approx 1.0296$[/tex]
- Although there's a slight variation, it maintains an approximate linear growth rate. Examining differences:
- Year 1 to Year 2: [tex]$304,000 - 295,000 = 9,000$[/tex]
- Year 2 to Year 3: [tex]$313,000 - 304,000 = 9,000$[/tex]
- Since the differences are consistent, the trend suggests a linear function.
### Part B: Write Functions Describing Each House's Value
House 1:
- The growth rate, calculated approximately as 1.03, showcases exponential growth:
[tex]\[ f_1(x) = 286,000 \times (1.03)^x \][/tex]
House 2:
- The consistent increase of \[tex]$9,000 per year describes linear growth: \[ f_2(x) = 286,000 + 9,000x \] ### Part C: Value of Each House After 25 Years House 1: \[ f_1(25) = 286,000 \times (1.03)^{25} \] Calculate: \[ (1.03)^{25} \approx 2.093 \, \text{(using a calculator)} \] Hence, \[ f_1(25) = 286,000 \times 2.093 \approx 598,598 \] House 2: \[ f_2(25) = 286,000 + 9,000 \times 25 \] Calculate: \[ 9,000 \times 25 = 225,000 \] Hence, \[ f_2(25) = 286,000 + 225,000 = 511,000 \] ### Conclusion Belinda should purchase House 1, as its projected value after 25 years ($[/tex]598,598[tex]$) is higher than that of House 2 ($[/tex]511,000$). The exponential growth of House 1 leads to a significantly higher value in the long term.
### Part A: Determine the Type of Function (Linear or Exponential)
House 1:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]294,580, [tex]$303,417.40, and $[/tex]312,519.92.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{303,417.40}{294,580} \approx 1.030$[/tex]
- Year 2 to Year 3: [tex]$\frac{312,519.92}{303,417.40} \approx 1.030$[/tex]
- Since the growth rate is consistent, the values suggest an exponential function.
House 2:
1. The initial value is [tex]$286,000, and the values for the next three years are $[/tex]295,000, [tex]$304,000, and $[/tex]313,000.
2. Calculate the year-over-year growth:
- Year 1 to Year 2: [tex]$\frac{304,000}{295,000} \approx 1.0305$[/tex]
- Year 2 to Year 3: [tex]$\frac{313,000}{304,000} \approx 1.0296$[/tex]
- Although there's a slight variation, it maintains an approximate linear growth rate. Examining differences:
- Year 1 to Year 2: [tex]$304,000 - 295,000 = 9,000$[/tex]
- Year 2 to Year 3: [tex]$313,000 - 304,000 = 9,000$[/tex]
- Since the differences are consistent, the trend suggests a linear function.
### Part B: Write Functions Describing Each House's Value
House 1:
- The growth rate, calculated approximately as 1.03, showcases exponential growth:
[tex]\[ f_1(x) = 286,000 \times (1.03)^x \][/tex]
House 2:
- The consistent increase of \[tex]$9,000 per year describes linear growth: \[ f_2(x) = 286,000 + 9,000x \] ### Part C: Value of Each House After 25 Years House 1: \[ f_1(25) = 286,000 \times (1.03)^{25} \] Calculate: \[ (1.03)^{25} \approx 2.093 \, \text{(using a calculator)} \] Hence, \[ f_1(25) = 286,000 \times 2.093 \approx 598,598 \] House 2: \[ f_2(25) = 286,000 + 9,000 \times 25 \] Calculate: \[ 9,000 \times 25 = 225,000 \] Hence, \[ f_2(25) = 286,000 + 225,000 = 511,000 \] ### Conclusion Belinda should purchase House 1, as its projected value after 25 years ($[/tex]598,598[tex]$) is higher than that of House 2 ($[/tex]511,000$). The exponential growth of House 1 leads to a significantly higher value in the long term.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.