Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which function has only one [tex]\( x \)[/tex]-intercept at [tex]\((-6, 0)\)[/tex], we need to analyze each function:
1. Function: [tex]\( f(x) = x(x-6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ x(x - 6) = 0 \][/tex]
This equation has roots [tex]\( x = 0 \)[/tex] and [tex]\( x = 6 \)[/tex].
- Intercepts: The intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (6, 0) \)[/tex].
- Conclusion: Two intercepts, neither of which is [tex]\((-6, 0)\)[/tex].
2. Function: [tex]\( f(x) = (x-6)(x-6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ (x - 6)(x - 6) = 0 \][/tex]
This equation has a repeated root [tex]\( x = 6 \)[/tex].
- Intercepts: The intercept is at [tex]\( (6, 0) \)[/tex].
- Conclusion: One intercept at [tex]\( (6, 0) \)[/tex], not [tex]\((-6, 0)\)[/tex].
3. Function: [tex]\( f(x) = (x+6)(x-6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ (x + 6)(x - 6) = 0 \][/tex]
This equation has roots [tex]\( x = -6 \)[/tex] and [tex]\( x = 6 \)[/tex].
- Intercepts: The intercepts are at [tex]\( (-6, 0) \)[/tex] and [tex]\( (6, 0) \)[/tex].
- Conclusion: This function has an intercept at [tex]\( (-6, 0) \)[/tex], but also has another intercept at [tex]\( (6, 0) \)[/tex].
4. Function: [tex]\( f(x) = (x+6)(x+6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ (x + 6)(x + 6) = 0 \][/tex]
This equation has a repeated root [tex]\( x = -6 \)[/tex].
- Intercepts: The intercept is at [tex]\( (-6, 0) \)[/tex].
- Conclusion: Only one intercept at [tex]\( (-6, 0) \)[/tex].
By analyzing the intercepts of each function, we conclude that:
The function [tex]\( f(x) = (x+6)(x+6) \)[/tex] has only one [tex]\( x \)[/tex]-intercept at [tex]\((-6, 0)\)[/tex].
1. Function: [tex]\( f(x) = x(x-6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ x(x - 6) = 0 \][/tex]
This equation has roots [tex]\( x = 0 \)[/tex] and [tex]\( x = 6 \)[/tex].
- Intercepts: The intercepts are at [tex]\( (0, 0) \)[/tex] and [tex]\( (6, 0) \)[/tex].
- Conclusion: Two intercepts, neither of which is [tex]\((-6, 0)\)[/tex].
2. Function: [tex]\( f(x) = (x-6)(x-6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ (x - 6)(x - 6) = 0 \][/tex]
This equation has a repeated root [tex]\( x = 6 \)[/tex].
- Intercepts: The intercept is at [tex]\( (6, 0) \)[/tex].
- Conclusion: One intercept at [tex]\( (6, 0) \)[/tex], not [tex]\((-6, 0)\)[/tex].
3. Function: [tex]\( f(x) = (x+6)(x-6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ (x + 6)(x - 6) = 0 \][/tex]
This equation has roots [tex]\( x = -6 \)[/tex] and [tex]\( x = 6 \)[/tex].
- Intercepts: The intercepts are at [tex]\( (-6, 0) \)[/tex] and [tex]\( (6, 0) \)[/tex].
- Conclusion: This function has an intercept at [tex]\( (-6, 0) \)[/tex], but also has another intercept at [tex]\( (6, 0) \)[/tex].
4. Function: [tex]\( f(x) = (x+6)(x+6) \)[/tex]
- Roots: To find the roots, set [tex]\( f(x) = 0 \)[/tex].
[tex]\[ (x + 6)(x + 6) = 0 \][/tex]
This equation has a repeated root [tex]\( x = -6 \)[/tex].
- Intercepts: The intercept is at [tex]\( (-6, 0) \)[/tex].
- Conclusion: Only one intercept at [tex]\( (-6, 0) \)[/tex].
By analyzing the intercepts of each function, we conclude that:
The function [tex]\( f(x) = (x+6)(x+6) \)[/tex] has only one [tex]\( x \)[/tex]-intercept at [tex]\((-6, 0)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.