Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which polynomials are in standard form, we first need to understand what it means for a polynomial to be in standard form. A polynomial is in standard form if its terms are ordered in descending powers of the variable. Let's analyze each polynomial given:
Option A: [tex]\(3z - 1\)[/tex]
- In this polynomial, the term [tex]\(3z\)[/tex] is of the first degree, and the constant term [tex]\(-1\)[/tex] is of zero degrees.
- The terms are already in descending order: [tex]\(z^1\)[/tex] followed by [tex]\(z^0\)[/tex].
- Therefore, this polynomial is in standard form.
Option B: [tex]\(2 + 4x - 5x^2\)[/tex]
- In this polynomial, the term [tex]\( -5x^2 \)[/tex] is of the second degree, [tex]\(4x\)[/tex] is of the first degree, and the constant term [tex]\(2\)[/tex] is of zero degrees.
- The terms are not ordered correctly in descending powers of [tex]\(x\)[/tex].
- To be in standard form, it should be rewritten as: [tex]\(-5x^2 + 4x + 2\)[/tex].
- Therefore, this polynomial is not in standard form.
Option C: [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
- In this polynomial, [tex]\(-5p^5\)[/tex] is of the fifth degree, [tex]\(2p^2\)[/tex] is of the second degree, [tex]\(-3p\)[/tex] is of the first degree, and the constant term [tex]\(1\)[/tex] is of zero degrees.
- The terms are already in descending order of the powers of [tex]\(p\)[/tex].
- Therefore, this polynomial is in standard form.
So, the polynomials in standard form are:
- Option A: [tex]\(3z - 1\)[/tex]
- Option C: [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
These correspond to answer:
- A. [tex]\(3z - 1\)[/tex]
- C. [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
Option A: [tex]\(3z - 1\)[/tex]
- In this polynomial, the term [tex]\(3z\)[/tex] is of the first degree, and the constant term [tex]\(-1\)[/tex] is of zero degrees.
- The terms are already in descending order: [tex]\(z^1\)[/tex] followed by [tex]\(z^0\)[/tex].
- Therefore, this polynomial is in standard form.
Option B: [tex]\(2 + 4x - 5x^2\)[/tex]
- In this polynomial, the term [tex]\( -5x^2 \)[/tex] is of the second degree, [tex]\(4x\)[/tex] is of the first degree, and the constant term [tex]\(2\)[/tex] is of zero degrees.
- The terms are not ordered correctly in descending powers of [tex]\(x\)[/tex].
- To be in standard form, it should be rewritten as: [tex]\(-5x^2 + 4x + 2\)[/tex].
- Therefore, this polynomial is not in standard form.
Option C: [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
- In this polynomial, [tex]\(-5p^5\)[/tex] is of the fifth degree, [tex]\(2p^2\)[/tex] is of the second degree, [tex]\(-3p\)[/tex] is of the first degree, and the constant term [tex]\(1\)[/tex] is of zero degrees.
- The terms are already in descending order of the powers of [tex]\(p\)[/tex].
- Therefore, this polynomial is in standard form.
So, the polynomials in standard form are:
- Option A: [tex]\(3z - 1\)[/tex]
- Option C: [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
These correspond to answer:
- A. [tex]\(3z - 1\)[/tex]
- C. [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.