Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through each question step-by-step.
1. Find the slope of a line passing through the points [tex]\((1,2)\)[/tex] and [tex]\((3,4)\)[/tex]:
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points [tex]\((1, 2)\)[/tex] and [tex]\((3, 4)\)[/tex]:
[tex]\[ m = \frac{4 - 2}{3 - 1} = \frac{2}{2} = 1 \][/tex]
Therefore, the slope is [tex]\( 1 \)[/tex].
2. Find the slope of the line passing through the points [tex]\((4,-2)\)[/tex] and [tex]\((-1,7)\)[/tex]:
Using the same slope formula:
[tex]\[ m = \frac{7 - (-2)}{-1 - 4} = \frac{7 + 2}{-1 - 4} = \frac{9}{-5} = -1.8 \][/tex]
Therefore, the slope is [tex]\( -1.8 \)[/tex].
3. Write the slope-intercept equation of the line that passes through the point [tex]\((0,0)\)[/tex] and is perpendicular to the line shown at right:
Assuming the given line has a slope of [tex]\( 1 \)[/tex], since perpendicular slopes are negative reciprocals:
[tex]\[ \text{Slope of perpendicular line} = -\frac{1}{1} = -1 \][/tex]
Since the line passes through [tex]\((0,0)\)[/tex], the y-intercept [tex]\( b \)[/tex] is [tex]\( 0 \)[/tex]. Therefore, the equation is:
[tex]\[ y = -1x + 0 \quad \text{or simply} \quad y = -1x \][/tex]
4. Write the slope-intercept equation of the line that passes through the point [tex]\((1,-2)\)[/tex] and is parallel to the line [tex]\(y = \frac{4}{3} x + 11\)[/tex]:
Since parallel lines have the same slope, the slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{3} \)[/tex]. Using the point-slope form [tex]\( y = mx + b \)[/tex]:
[tex]\[ -2 = \frac{4}{3}(1) + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ -2 = \frac{4}{3} + b \implies b = -2 - \frac{4}{3} = -\frac{6}{3} - \frac{4}{3} = -\frac{10}{3} \][/tex]
Therefore, the equation is:
[tex]\[ y = \frac{4}{3}x - \frac{10}{3} \][/tex]
5. Solve the system of equations: [tex]\(\left\{\begin{array}{c} 3 x+4 y=-6 \\ 5 x+3 y=1 \end{array}\right.\)[/tex]
Using the system:
[tex]\[ \begin{cases} 3x + 4y = -6 \\ 5x + 3y = 1 \end{cases} \][/tex]
Solving this system, we get:
[tex]\[ x = 2, \quad y = -3 \][/tex]
Therefore, the solution is [tex]\((2, -3)\)[/tex].
6. A system of equations in the [tex]\(xy\)[/tex]-plane has a single solution [tex]\((x, y)\)[/tex]. If the system is given by the equations [tex]\(\left\{\begin{array}{c} 2 x+y=k \\ x-y=3-k \end{array}\right.\)[/tex] for some unknown value [tex]\(k\)[/tex], what is the value of the [tex]\(x\)[/tex]-coordinate of the solution of the system?
Solving this system of equations:
[tex]\[ x = k = 1 \][/tex]
Therefore, the [tex]\( x \)[/tex]-coordinate of the solution is [tex]\( 1 \)[/tex].
7. Solve: [tex]\(\frac{3}{5}x + 4 \leq 2\)[/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ \frac{3}{5}x + 4 = 2 \implies \frac{3}{5}x = -2 \implies x = -\frac{10}{3} \approx -3.333 \][/tex]
Therefore, the solution set is:
[tex]\[ \{-3.333\} \][/tex]
8. Solve: [tex]\(3(x+3)>5(x-1)\)[/tex]
Expand and solve:
[tex]\[ 3x + 9 > 5x - 5 \implies 3x + 9 - 5x > -5 \implies -2x > -14 \implies x < 7 \][/tex]
Therefore, the solution set is:
[tex]\[ (-\infty, 7) \][/tex]
9. Solve: [tex]\(2 \leq 3x - 10 \leq 5\)[/tex]
Split it into two inequalities:
[tex]\[ 2 \leq 3x - 10 \implies 12 \leq 3x \implies 4 \leq x \][/tex]
[tex]\[ 3x - 10 \leq 5 \implies 3x \leq 15 \implies x \leq 5 \][/tex]
Therefore, combining both:
[tex]\[ 4 \leq x \leq 5 \][/tex]
Interval solution is:
[tex]\[ [4, 5] \][/tex]
However, since we can't find [tex]\( x \)[/tex] that satisfies both inequalities, we get:
[tex]\[ \text{Empty Set} \][/tex]
1. Find the slope of a line passing through the points [tex]\((1,2)\)[/tex] and [tex]\((3,4)\)[/tex]:
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points [tex]\((1, 2)\)[/tex] and [tex]\((3, 4)\)[/tex]:
[tex]\[ m = \frac{4 - 2}{3 - 1} = \frac{2}{2} = 1 \][/tex]
Therefore, the slope is [tex]\( 1 \)[/tex].
2. Find the slope of the line passing through the points [tex]\((4,-2)\)[/tex] and [tex]\((-1,7)\)[/tex]:
Using the same slope formula:
[tex]\[ m = \frac{7 - (-2)}{-1 - 4} = \frac{7 + 2}{-1 - 4} = \frac{9}{-5} = -1.8 \][/tex]
Therefore, the slope is [tex]\( -1.8 \)[/tex].
3. Write the slope-intercept equation of the line that passes through the point [tex]\((0,0)\)[/tex] and is perpendicular to the line shown at right:
Assuming the given line has a slope of [tex]\( 1 \)[/tex], since perpendicular slopes are negative reciprocals:
[tex]\[ \text{Slope of perpendicular line} = -\frac{1}{1} = -1 \][/tex]
Since the line passes through [tex]\((0,0)\)[/tex], the y-intercept [tex]\( b \)[/tex] is [tex]\( 0 \)[/tex]. Therefore, the equation is:
[tex]\[ y = -1x + 0 \quad \text{or simply} \quad y = -1x \][/tex]
4. Write the slope-intercept equation of the line that passes through the point [tex]\((1,-2)\)[/tex] and is parallel to the line [tex]\(y = \frac{4}{3} x + 11\)[/tex]:
Since parallel lines have the same slope, the slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{3} \)[/tex]. Using the point-slope form [tex]\( y = mx + b \)[/tex]:
[tex]\[ -2 = \frac{4}{3}(1) + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ -2 = \frac{4}{3} + b \implies b = -2 - \frac{4}{3} = -\frac{6}{3} - \frac{4}{3} = -\frac{10}{3} \][/tex]
Therefore, the equation is:
[tex]\[ y = \frac{4}{3}x - \frac{10}{3} \][/tex]
5. Solve the system of equations: [tex]\(\left\{\begin{array}{c} 3 x+4 y=-6 \\ 5 x+3 y=1 \end{array}\right.\)[/tex]
Using the system:
[tex]\[ \begin{cases} 3x + 4y = -6 \\ 5x + 3y = 1 \end{cases} \][/tex]
Solving this system, we get:
[tex]\[ x = 2, \quad y = -3 \][/tex]
Therefore, the solution is [tex]\((2, -3)\)[/tex].
6. A system of equations in the [tex]\(xy\)[/tex]-plane has a single solution [tex]\((x, y)\)[/tex]. If the system is given by the equations [tex]\(\left\{\begin{array}{c} 2 x+y=k \\ x-y=3-k \end{array}\right.\)[/tex] for some unknown value [tex]\(k\)[/tex], what is the value of the [tex]\(x\)[/tex]-coordinate of the solution of the system?
Solving this system of equations:
[tex]\[ x = k = 1 \][/tex]
Therefore, the [tex]\( x \)[/tex]-coordinate of the solution is [tex]\( 1 \)[/tex].
7. Solve: [tex]\(\frac{3}{5}x + 4 \leq 2\)[/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ \frac{3}{5}x + 4 = 2 \implies \frac{3}{5}x = -2 \implies x = -\frac{10}{3} \approx -3.333 \][/tex]
Therefore, the solution set is:
[tex]\[ \{-3.333\} \][/tex]
8. Solve: [tex]\(3(x+3)>5(x-1)\)[/tex]
Expand and solve:
[tex]\[ 3x + 9 > 5x - 5 \implies 3x + 9 - 5x > -5 \implies -2x > -14 \implies x < 7 \][/tex]
Therefore, the solution set is:
[tex]\[ (-\infty, 7) \][/tex]
9. Solve: [tex]\(2 \leq 3x - 10 \leq 5\)[/tex]
Split it into two inequalities:
[tex]\[ 2 \leq 3x - 10 \implies 12 \leq 3x \implies 4 \leq x \][/tex]
[tex]\[ 3x - 10 \leq 5 \implies 3x \leq 15 \implies x \leq 5 \][/tex]
Therefore, combining both:
[tex]\[ 4 \leq x \leq 5 \][/tex]
Interval solution is:
[tex]\[ [4, 5] \][/tex]
However, since we can't find [tex]\( x \)[/tex] that satisfies both inequalities, we get:
[tex]\[ \text{Empty Set} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.