Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve this step-by-step.
### Step A: Write a system of equations
Given:
1. Two burgers and three orders of fries cost \[tex]$19.75. 2. Five burgers and two orders of fries cost \$[/tex]37.
Let [tex]\( x \)[/tex] be the cost of one burger.
Let [tex]\( y \)[/tex] be the cost of one order of fries.
We can translate the information into a system of linear equations:
1. [tex]\( 2x + 3y = 19.75 \)[/tex]
2. [tex]\( 5x + 2y = 37 \)[/tex]
### Step B: Solve the problem
Now, we need to solve this system of equations to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
#### Step 1: Multiply the equations to align the coefficients
To eliminate one of the variables, we can align the coefficients of either [tex]\( x \)[/tex] or [tex]\( y \)[/tex]. Let's eliminate [tex]\( y \)[/tex].
We'll multiply the first equation by 2 and the second equation by 3 to get the coefficients of [tex]\( y \)[/tex] to match:
[tex]\[ 2(2x + 3y) = 2 \times 19.75 \][/tex]
[tex]\[ 3(5x + 2y) = 3 \times 37 \][/tex]
This gives us:
[tex]\[ 4x + 6y = 39.50 \][/tex]
[tex]\[ 15x + 6y = 111 \][/tex]
#### Step 2: Subtract the equations to eliminate [tex]\( y \)[/tex]
Now subtract the first modified equation from the second modified equation:
[tex]\[ (15x + 6y) - (4x + 6y) = 111 - 39.50 \][/tex]
[tex]\[ 11x = 71.50 \][/tex]
#### Step 3: Solve for [tex]\( x \)[/tex]
[tex]\[ x = \frac{71.50}{11} = 6.50 \][/tex]
So, the cost of one burger is [tex]\( \$6.50 \)[/tex].
#### Step 4: Substitute [tex]\( x \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]
Using the first original equation:
[tex]\[ 2x + 3y = 19.75 \][/tex]
[tex]\[ 2(6.50) + 3y = 19.75 \][/tex]
[tex]\[ 13 + 3y = 19.75 \][/tex]
[tex]\[ 3y = 19.75 - 13 \][/tex]
[tex]\[ 3y = 6.75 \][/tex]
[tex]\[ y = \frac{6.75}{3} = 2.25 \][/tex]
So, the cost of one order of fries is [tex]\( \$2.25 \)[/tex].
### Step C: Solution to the system of equations
The cost of one burger is \[tex]$6.50, and the cost of one order of fries is \$[/tex]2.25.
### Step A: Write a system of equations
Given:
1. Two burgers and three orders of fries cost \[tex]$19.75. 2. Five burgers and two orders of fries cost \$[/tex]37.
Let [tex]\( x \)[/tex] be the cost of one burger.
Let [tex]\( y \)[/tex] be the cost of one order of fries.
We can translate the information into a system of linear equations:
1. [tex]\( 2x + 3y = 19.75 \)[/tex]
2. [tex]\( 5x + 2y = 37 \)[/tex]
### Step B: Solve the problem
Now, we need to solve this system of equations to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
#### Step 1: Multiply the equations to align the coefficients
To eliminate one of the variables, we can align the coefficients of either [tex]\( x \)[/tex] or [tex]\( y \)[/tex]. Let's eliminate [tex]\( y \)[/tex].
We'll multiply the first equation by 2 and the second equation by 3 to get the coefficients of [tex]\( y \)[/tex] to match:
[tex]\[ 2(2x + 3y) = 2 \times 19.75 \][/tex]
[tex]\[ 3(5x + 2y) = 3 \times 37 \][/tex]
This gives us:
[tex]\[ 4x + 6y = 39.50 \][/tex]
[tex]\[ 15x + 6y = 111 \][/tex]
#### Step 2: Subtract the equations to eliminate [tex]\( y \)[/tex]
Now subtract the first modified equation from the second modified equation:
[tex]\[ (15x + 6y) - (4x + 6y) = 111 - 39.50 \][/tex]
[tex]\[ 11x = 71.50 \][/tex]
#### Step 3: Solve for [tex]\( x \)[/tex]
[tex]\[ x = \frac{71.50}{11} = 6.50 \][/tex]
So, the cost of one burger is [tex]\( \$6.50 \)[/tex].
#### Step 4: Substitute [tex]\( x \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]
Using the first original equation:
[tex]\[ 2x + 3y = 19.75 \][/tex]
[tex]\[ 2(6.50) + 3y = 19.75 \][/tex]
[tex]\[ 13 + 3y = 19.75 \][/tex]
[tex]\[ 3y = 19.75 - 13 \][/tex]
[tex]\[ 3y = 6.75 \][/tex]
[tex]\[ y = \frac{6.75}{3} = 2.25 \][/tex]
So, the cost of one order of fries is [tex]\( \$2.25 \)[/tex].
### Step C: Solution to the system of equations
The cost of one burger is \[tex]$6.50, and the cost of one order of fries is \$[/tex]2.25.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.