Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's complete the proof step-by-step by filling in the correct reasons from the given options.
Here's the proof with the appropriate reasons:
[tex]\[ \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|}{ \textbf{Statement} } & \multicolumn{1}{|c|}{ \textbf{Reason} } \\ \hline Q is between P and R & Given \\ \hline $R$ is between $Q$ and $S$ & Given \\ \hline $Q R + R S = Q S$ & Segment Addition Postulate \\ \hline $P R = Q S$ & Given \\ \hline $P Q + Q R = Q R + R S$ & Segment Addition Postulate \\ \hline $P Q + Q R - Q R = Q R + R S - Q R$ & Subtraction Property of Equality \\ \hline $P Q = R S$ & Simplify \\ \hline \end{tabular} \][/tex]
Reasoning:
1. Given statements are directly used to establish Q's position between P and R and R's position between Q and S.
2. The Segment Addition Postulate is used twice to express [tex]$Q S$[/tex] and [tex]$P R$[/tex] in terms of their segments.
3. The Subtraction Property of Equality is used to isolate [tex]$PQ$[/tex] and [tex]$RS$[/tex] after subtracting [tex]$QR$[/tex] from both sides.
This proof completes by logically following from the given statements to reach the conclusion that [tex]$PQ = RS$[/tex].
Here's the proof with the appropriate reasons:
[tex]\[ \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|}{ \textbf{Statement} } & \multicolumn{1}{|c|}{ \textbf{Reason} } \\ \hline Q is between P and R & Given \\ \hline $R$ is between $Q$ and $S$ & Given \\ \hline $Q R + R S = Q S$ & Segment Addition Postulate \\ \hline $P R = Q S$ & Given \\ \hline $P Q + Q R = Q R + R S$ & Segment Addition Postulate \\ \hline $P Q + Q R - Q R = Q R + R S - Q R$ & Subtraction Property of Equality \\ \hline $P Q = R S$ & Simplify \\ \hline \end{tabular} \][/tex]
Reasoning:
1. Given statements are directly used to establish Q's position between P and R and R's position between Q and S.
2. The Segment Addition Postulate is used twice to express [tex]$Q S$[/tex] and [tex]$P R$[/tex] in terms of their segments.
3. The Subtraction Property of Equality is used to isolate [tex]$PQ$[/tex] and [tex]$RS$[/tex] after subtracting [tex]$QR$[/tex] from both sides.
This proof completes by logically following from the given statements to reach the conclusion that [tex]$PQ = RS$[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.