Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer: -12 ft/sec
Definition of a limit
f'(x) = [tex]\lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}[/tex]
In this problem, velocity is s'(t): the derivative of the position function.
s'(t) = [tex]\lim_{h \to 0} \dfrac{s(t+h)-s(t)}{h}[/tex]
v(t) = [tex]\lim_{h \to 0} \dfrac{s(t+h)-s(t)}{h}[/tex]
Substituting the equation
s(t+h) = -16(t+h)² + 20(t+h) + 100
s(t) = -16t² + 20t + 100
v(t) = [tex]\lim_{h \to 0} \dfrac{[-16(t+h)^{2}+20(t+h)+100]-[-16t^{2}+20t+100]}{h}[/tex]
Simplify
[tex]\lim_{h \to 0} \dfrac{[-16t^{2}-32th-16h^{2}+20t+20h+100]-[-16t^{2}+20t+100]}{h}[/tex]
= [tex]\lim_{h \to 0} \dfrac{-16t^{2}-32th-16h^{2}+20t+20h+100+16t^{2}-20t-100}{h}[/tex]
Several terms cancel out:
= [tex]\lim_{h \to 0} \dfrac{-32th-16h^{2}+20h}{h}[/tex]
Factor out an h from the numerator:
= [tex]\lim_{h \to 0} \dfrac{(-32t-16h+20)h}{h}[/tex]
The h's cancel out:
= [tex]\lim_{h \to 0} \(-32t-16h+20[/tex]
Find the limit. All terms with an h will equal to 0.
= -32t + 20
v(t) = -32t + 20
Find v(1)
To find the velocity when t = 1, we need to evaluate v(1):
v(1) = -32(1) + 20
= -32 + 20
= -12 ft/sec
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.