At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the correct equation of a circle with a radius [tex]\( r \)[/tex] and center at [tex]\( (h, v) \)[/tex], we need to recall the general form of the equation of a circle in a Cartesian plane.
A circle centered at [tex]\( (h, v) \)[/tex] with radius [tex]\( r \)[/tex] can be described by the equation:
[tex]\[ (x - h)^2 + (y - v)^2 = r^2 \][/tex]
This equation states that any point [tex]\( (x, y) \)[/tex] on the circle is a distance [tex]\( r \)[/tex] away from the center [tex]\( (h, v) \)[/tex]. Let's analyze each given option:
A. [tex]\((x - h)^2 + (y - v)^2 = r^2\)[/tex]
This equation matches the form we identified for the equation of a circle, so it is correct.
B. [tex]\((x + h)^2 + (y + y)^2 = r^2\)[/tex]
This equation is flawed because it incorrectly uses [tex]\( +h \)[/tex] instead of [tex]\( -h \)[/tex] and seems to have a typographical error [tex]\( y + y \)[/tex] instead of [tex]\( y - v \)[/tex].
C. [tex]\((x - v)^2 + (y - h)^2 = r^2\)[/tex]
This equation incorrectly swaps the [tex]\( h \)[/tex] and [tex]\( v \)[/tex] variables, which misplaces the center coordinates. This cannot be the correct equation of our circle.
D. [tex]\(h^2 + v^2 = r^2\)[/tex]
This is not even in the form of an equation of a circle involving [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. It is irrelevant to the problem at hand.
Thus, the correct equation for a circle with radius [tex]\( r \)[/tex] and center at [tex]\( (h, v) \)[/tex] is:
Option A: [tex]\((x - h)^2 + (y - v)^2 = r^2\)[/tex]
A circle centered at [tex]\( (h, v) \)[/tex] with radius [tex]\( r \)[/tex] can be described by the equation:
[tex]\[ (x - h)^2 + (y - v)^2 = r^2 \][/tex]
This equation states that any point [tex]\( (x, y) \)[/tex] on the circle is a distance [tex]\( r \)[/tex] away from the center [tex]\( (h, v) \)[/tex]. Let's analyze each given option:
A. [tex]\((x - h)^2 + (y - v)^2 = r^2\)[/tex]
This equation matches the form we identified for the equation of a circle, so it is correct.
B. [tex]\((x + h)^2 + (y + y)^2 = r^2\)[/tex]
This equation is flawed because it incorrectly uses [tex]\( +h \)[/tex] instead of [tex]\( -h \)[/tex] and seems to have a typographical error [tex]\( y + y \)[/tex] instead of [tex]\( y - v \)[/tex].
C. [tex]\((x - v)^2 + (y - h)^2 = r^2\)[/tex]
This equation incorrectly swaps the [tex]\( h \)[/tex] and [tex]\( v \)[/tex] variables, which misplaces the center coordinates. This cannot be the correct equation of our circle.
D. [tex]\(h^2 + v^2 = r^2\)[/tex]
This is not even in the form of an equation of a circle involving [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. It is irrelevant to the problem at hand.
Thus, the correct equation for a circle with radius [tex]\( r \)[/tex] and center at [tex]\( (h, v) \)[/tex] is:
Option A: [tex]\((x - h)^2 + (y - v)^2 = r^2\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.