At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which circles have their centers in the third quadrant, we need to identify the coordinates of the centers of each circle and then check if those coordinates satisfy the condition for being in the third quadrant. The third quadrant is defined by both [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates being negative.
Let's analyze each equation one by one:
Circle A: [tex]\((x+9)^2 + (y+12)^2 = 36\)[/tex]
- This is the equation of a circle in the form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
- For Circle A, the center is [tex]\((-9, -12)\)[/tex].
- Both coordinates [tex]\(-9\)[/tex] and [tex]\(-12\)[/tex] are negative, so the center is in the third quadrant.
Circle B: [tex]\((x+14)^2 + (y-14)^2 = 84\)[/tex]
- The center is [tex]\((-14, 14)\)[/tex].
- The x-coordinate [tex]\(-14\)[/tex] is negative, but the y-coordinate [tex]\(14\)[/tex] is positive.
- Thus, the center is not in the third quadrant.
Circle C: [tex]\((x+16)^2 + (y+3)^2 = 17\)[/tex]
- The center is [tex]\((-16, -3)\)[/tex].
- Both coordinates [tex]\(-16\)[/tex] and [tex]\(-3\)[/tex] are negative, so the center is in the third quadrant.
Circle D: [tex]\((x+3)^2 + (y-6)^2 = 44\)[/tex]
- The center is [tex]\((-3, 6)\)[/tex].
- The x-coordinate [tex]\(-3\)[/tex] is negative, but the y-coordinate [tex]\(6\)[/tex] is positive.
- Thus, the center is not in the third quadrant.
Hence, the circles that have their centers in the third quadrant are:
- Circle A
- Circle C
Thus, the correct options are:
A. and C.
Let's analyze each equation one by one:
Circle A: [tex]\((x+9)^2 + (y+12)^2 = 36\)[/tex]
- This is the equation of a circle in the form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
- For Circle A, the center is [tex]\((-9, -12)\)[/tex].
- Both coordinates [tex]\(-9\)[/tex] and [tex]\(-12\)[/tex] are negative, so the center is in the third quadrant.
Circle B: [tex]\((x+14)^2 + (y-14)^2 = 84\)[/tex]
- The center is [tex]\((-14, 14)\)[/tex].
- The x-coordinate [tex]\(-14\)[/tex] is negative, but the y-coordinate [tex]\(14\)[/tex] is positive.
- Thus, the center is not in the third quadrant.
Circle C: [tex]\((x+16)^2 + (y+3)^2 = 17\)[/tex]
- The center is [tex]\((-16, -3)\)[/tex].
- Both coordinates [tex]\(-16\)[/tex] and [tex]\(-3\)[/tex] are negative, so the center is in the third quadrant.
Circle D: [tex]\((x+3)^2 + (y-6)^2 = 44\)[/tex]
- The center is [tex]\((-3, 6)\)[/tex].
- The x-coordinate [tex]\(-3\)[/tex] is negative, but the y-coordinate [tex]\(6\)[/tex] is positive.
- Thus, the center is not in the third quadrant.
Hence, the circles that have their centers in the third quadrant are:
- Circle A
- Circle C
Thus, the correct options are:
A. and C.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.