Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain of the step function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex], let's analyze it step by step.
1. Understanding the Ceiling Function:
The ceiling function [tex]\(\lceil y \rceil\)[/tex] takes any real number [tex]\(y\)[/tex] and rounds it up to the nearest integer. For example:
- [tex]\(\lceil 3.2 \rceil = 4\)[/tex]
- [tex]\(\lceil -1.5 \rceil = -1\)[/tex]
2. Applying the Ceiling Function:
In the function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex], we first compute [tex]\( 2x \)[/tex] and then apply the ceiling function to it, and finally subtract 1.
- If [tex]\( x = 0.5 \)[/tex], then [tex]\( 2x = 1 \)[/tex], and [tex]\(\lceil 1 \rceil = 1\)[/tex], so [tex]\( f(0.5) = 1 - 1 = 0\)[/tex].
- If [tex]\( x = -1.5 \)[/tex], then [tex]\( 2x = -3 \)[/tex], and [tex]\(\lceil -3 \rceil = -3\)[/tex], so [tex]\( f(-1.5) = -3 - 1 = -4 \)[/tex].
3. Identifying the Domain:
The domain of a function is the set of all input values [tex]\( x \)[/tex] for which the function is defined.
- The expression [tex]\( 2x \)[/tex] is defined for all real numbers [tex]\( x \)[/tex].
- The ceiling function [tex]\(\lceil 2x \rceil \)[/tex] is defined for all real numbers [tex]\( 2x \)[/tex].
- Subtracting 1 to [tex]\(\lceil 2x \rceil - 1\)[/tex] is also defined for all real numbers.
Since there are no restrictions on [tex]\( x \)[/tex] in the function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex], the domain of [tex]\( f(x) \)[/tex] is all real numbers.
Hence, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \{ x \mid x \text{ is a real number} \} \][/tex]
So, the correct option is:
[tex]\[ \{ x \mid x \text{ is a real number} \} \][/tex]
1. Understanding the Ceiling Function:
The ceiling function [tex]\(\lceil y \rceil\)[/tex] takes any real number [tex]\(y\)[/tex] and rounds it up to the nearest integer. For example:
- [tex]\(\lceil 3.2 \rceil = 4\)[/tex]
- [tex]\(\lceil -1.5 \rceil = -1\)[/tex]
2. Applying the Ceiling Function:
In the function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex], we first compute [tex]\( 2x \)[/tex] and then apply the ceiling function to it, and finally subtract 1.
- If [tex]\( x = 0.5 \)[/tex], then [tex]\( 2x = 1 \)[/tex], and [tex]\(\lceil 1 \rceil = 1\)[/tex], so [tex]\( f(0.5) = 1 - 1 = 0\)[/tex].
- If [tex]\( x = -1.5 \)[/tex], then [tex]\( 2x = -3 \)[/tex], and [tex]\(\lceil -3 \rceil = -3\)[/tex], so [tex]\( f(-1.5) = -3 - 1 = -4 \)[/tex].
3. Identifying the Domain:
The domain of a function is the set of all input values [tex]\( x \)[/tex] for which the function is defined.
- The expression [tex]\( 2x \)[/tex] is defined for all real numbers [tex]\( x \)[/tex].
- The ceiling function [tex]\(\lceil 2x \rceil \)[/tex] is defined for all real numbers [tex]\( 2x \)[/tex].
- Subtracting 1 to [tex]\(\lceil 2x \rceil - 1\)[/tex] is also defined for all real numbers.
Since there are no restrictions on [tex]\( x \)[/tex] in the function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex], the domain of [tex]\( f(x) \)[/tex] is all real numbers.
Hence, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \{ x \mid x \text{ is a real number} \} \][/tex]
So, the correct option is:
[tex]\[ \{ x \mid x \text{ is a real number} \} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.