At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the measure of the unknown angle [tex]\( x \)[/tex] in the triangle, given that [tex]\( x = \sin^{-1}\left(\frac{5}{8.3}\right) \)[/tex], we'll walk through the steps needed to solve for [tex]\( x \)[/tex].
### Step 1: Understand the Problem
The equation [tex]\( x = \sin^{-1}\left(\frac{5}{8.3}\right) \)[/tex] is asking us to find the angle [tex]\( x \)[/tex] whose sine value is [tex]\( \frac{5}{8.3} \)[/tex]. Here, [tex]\(\sin^{-1}\)[/tex] denotes the inverse sine function, also known as arcsine.
### Step 2: Calculate the Sine Value
First, we'll interpret what [tex]\(\sin^{-1}(y)\)[/tex] means. It gives us the angle whose sine is [tex]\( y \)[/tex].
Given our problem:
[tex]\[ \sin(x) = \frac{5}{8.3} \][/tex]
### Step 3: Find the Angle [tex]\( x \)[/tex] in Radians
Using the arcsine function:
[tex]\[ x = \sin^{-1}\left(\frac{5}{8.3}\right) \][/tex]
From a correctly executed calculation, the angle [tex]\( x \)[/tex] in radians is:
[tex]\[ x \approx 0.6465 \text{ radians} \][/tex]
### Step 4: Convert to Degrees (if required)
Oftentimes, angles in trigonometry are expressed in degrees rather than radians. To convert the radians result to degrees, we use the conversion factor:
[tex]\[ 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \][/tex]
So:
[tex]\[ x \approx 0.6465 \text{ radians} \times \left(\frac{180}{\pi}\right) \approx 37.0427 \text{ degrees} \][/tex]
### Step 5: State the Result
Hence, the measure of the unknown angle [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 0.6465 \text{ radians} \][/tex]
or equivalently:
[tex]\[ x \approx 37.04^\circ \][/tex]
### Conclusion
In the given triangle, the angle [tex]\( x \)[/tex] corresponding to [tex]\(\sin^{-1}\left(\frac{5}{8.3}\right)\)[/tex] is measured as approximately 0.6465 radians or 37.04 degrees.
### Step 1: Understand the Problem
The equation [tex]\( x = \sin^{-1}\left(\frac{5}{8.3}\right) \)[/tex] is asking us to find the angle [tex]\( x \)[/tex] whose sine value is [tex]\( \frac{5}{8.3} \)[/tex]. Here, [tex]\(\sin^{-1}\)[/tex] denotes the inverse sine function, also known as arcsine.
### Step 2: Calculate the Sine Value
First, we'll interpret what [tex]\(\sin^{-1}(y)\)[/tex] means. It gives us the angle whose sine is [tex]\( y \)[/tex].
Given our problem:
[tex]\[ \sin(x) = \frac{5}{8.3} \][/tex]
### Step 3: Find the Angle [tex]\( x \)[/tex] in Radians
Using the arcsine function:
[tex]\[ x = \sin^{-1}\left(\frac{5}{8.3}\right) \][/tex]
From a correctly executed calculation, the angle [tex]\( x \)[/tex] in radians is:
[tex]\[ x \approx 0.6465 \text{ radians} \][/tex]
### Step 4: Convert to Degrees (if required)
Oftentimes, angles in trigonometry are expressed in degrees rather than radians. To convert the radians result to degrees, we use the conversion factor:
[tex]\[ 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \][/tex]
So:
[tex]\[ x \approx 0.6465 \text{ radians} \times \left(\frac{180}{\pi}\right) \approx 37.0427 \text{ degrees} \][/tex]
### Step 5: State the Result
Hence, the measure of the unknown angle [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 0.6465 \text{ radians} \][/tex]
or equivalently:
[tex]\[ x \approx 37.04^\circ \][/tex]
### Conclusion
In the given triangle, the angle [tex]\( x \)[/tex] corresponding to [tex]\(\sin^{-1}\left(\frac{5}{8.3}\right)\)[/tex] is measured as approximately 0.6465 radians or 37.04 degrees.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.