Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the set of points at which the function
[tex]\[ f(x, y) = \begin{cases} \frac{x y}{x^2 + x y + y^2} & \text{if } (x, y) \ne (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \][/tex]
is continuous, we need to find where this function does not break continuity.
1. Analyzing Continuity at Non-Origin Points [tex]\((x, y)\)[/tex]:
First, consider the function for points [tex]\((x, y) \ne (0, 0)\)[/tex].
[tex]\[ f(x, y) = \frac{x y}{x^2 + x y + y^2} \][/tex]
For [tex]\((x, y) \ne (0, 0)\)[/tex], the function is defined by a ratio of polynomials, which are continuous everywhere in their domain, provided the denominator does not equal zero.
2. Denominator Analysis:
Note that [tex]\(x^2 + x y + y^2\)[/tex] is always non-zero for [tex]\((x, y) \ne (0, 0)\)[/tex]. This is because:
- If [tex]\(x = 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = y^2 \ne 0\)[/tex].
- If [tex]\(y = 0\)[/tex] and [tex]\(x \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = x^2 \ne 0\)[/tex].
- If [tex]\(x \ne 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2\)[/tex] is a sum of positive terms and cannot be zero.
3. Continuity at the Origin [tex]\((0, 0)\)[/tex]:
To check for the continuity at [tex]\((0, 0)\)[/tex], we need to see if the limit as [tex]\((x, y)\)[/tex] approaches [tex]\((0, 0)\)[/tex] equals the function's value at [tex]\((0, 0)\)[/tex]. Let's examine the limit:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \][/tex]
By trying different paths:
- Along [tex]\(y = kx\)[/tex], the expression simplifies to:
[tex]\[ \frac{x(kx)}{x^2 + x(kx) + (kx)^2} = \frac{kx^2}{x^2 + kx^2 + k^2x^2} = \frac{kx^2}{(1+k+k^2)x^2} = \frac{k}{1+k+k^2} \][/tex]
This limit depends on [tex]\(k\)[/tex], hence the limit is not unique as [tex]\((x, y) \to (0, 0)\)[/tex].
Since the limit is not unique, we conclude that:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \ne 0 \][/tex]
Therefore, the function is discontinuous at [tex]\((0, 0)\)[/tex].
Given these observations, the function [tex]\( f(x, y) \)[/tex] is continuous everywhere except at [tex]\((0, 0)\)[/tex].
Therefore, the set of points where the function is continuous is:
[tex]\[ \{(x, y) \mid (x, y) \ne (0,0)\} \][/tex]
[tex]\[ f(x, y) = \begin{cases} \frac{x y}{x^2 + x y + y^2} & \text{if } (x, y) \ne (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \][/tex]
is continuous, we need to find where this function does not break continuity.
1. Analyzing Continuity at Non-Origin Points [tex]\((x, y)\)[/tex]:
First, consider the function for points [tex]\((x, y) \ne (0, 0)\)[/tex].
[tex]\[ f(x, y) = \frac{x y}{x^2 + x y + y^2} \][/tex]
For [tex]\((x, y) \ne (0, 0)\)[/tex], the function is defined by a ratio of polynomials, which are continuous everywhere in their domain, provided the denominator does not equal zero.
2. Denominator Analysis:
Note that [tex]\(x^2 + x y + y^2\)[/tex] is always non-zero for [tex]\((x, y) \ne (0, 0)\)[/tex]. This is because:
- If [tex]\(x = 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = y^2 \ne 0\)[/tex].
- If [tex]\(y = 0\)[/tex] and [tex]\(x \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = x^2 \ne 0\)[/tex].
- If [tex]\(x \ne 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2\)[/tex] is a sum of positive terms and cannot be zero.
3. Continuity at the Origin [tex]\((0, 0)\)[/tex]:
To check for the continuity at [tex]\((0, 0)\)[/tex], we need to see if the limit as [tex]\((x, y)\)[/tex] approaches [tex]\((0, 0)\)[/tex] equals the function's value at [tex]\((0, 0)\)[/tex]. Let's examine the limit:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \][/tex]
By trying different paths:
- Along [tex]\(y = kx\)[/tex], the expression simplifies to:
[tex]\[ \frac{x(kx)}{x^2 + x(kx) + (kx)^2} = \frac{kx^2}{x^2 + kx^2 + k^2x^2} = \frac{kx^2}{(1+k+k^2)x^2} = \frac{k}{1+k+k^2} \][/tex]
This limit depends on [tex]\(k\)[/tex], hence the limit is not unique as [tex]\((x, y) \to (0, 0)\)[/tex].
Since the limit is not unique, we conclude that:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \ne 0 \][/tex]
Therefore, the function is discontinuous at [tex]\((0, 0)\)[/tex].
Given these observations, the function [tex]\( f(x, y) \)[/tex] is continuous everywhere except at [tex]\((0, 0)\)[/tex].
Therefore, the set of points where the function is continuous is:
[tex]\[ \{(x, y) \mid (x, y) \ne (0,0)\} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.