Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the set of points at which the function
[tex]\[ f(x, y) = \begin{cases} \frac{x y}{x^2 + x y + y^2} & \text{if } (x, y) \ne (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \][/tex]
is continuous, we need to find where this function does not break continuity.
1. Analyzing Continuity at Non-Origin Points [tex]\((x, y)\)[/tex]:
First, consider the function for points [tex]\((x, y) \ne (0, 0)\)[/tex].
[tex]\[ f(x, y) = \frac{x y}{x^2 + x y + y^2} \][/tex]
For [tex]\((x, y) \ne (0, 0)\)[/tex], the function is defined by a ratio of polynomials, which are continuous everywhere in their domain, provided the denominator does not equal zero.
2. Denominator Analysis:
Note that [tex]\(x^2 + x y + y^2\)[/tex] is always non-zero for [tex]\((x, y) \ne (0, 0)\)[/tex]. This is because:
- If [tex]\(x = 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = y^2 \ne 0\)[/tex].
- If [tex]\(y = 0\)[/tex] and [tex]\(x \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = x^2 \ne 0\)[/tex].
- If [tex]\(x \ne 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2\)[/tex] is a sum of positive terms and cannot be zero.
3. Continuity at the Origin [tex]\((0, 0)\)[/tex]:
To check for the continuity at [tex]\((0, 0)\)[/tex], we need to see if the limit as [tex]\((x, y)\)[/tex] approaches [tex]\((0, 0)\)[/tex] equals the function's value at [tex]\((0, 0)\)[/tex]. Let's examine the limit:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \][/tex]
By trying different paths:
- Along [tex]\(y = kx\)[/tex], the expression simplifies to:
[tex]\[ \frac{x(kx)}{x^2 + x(kx) + (kx)^2} = \frac{kx^2}{x^2 + kx^2 + k^2x^2} = \frac{kx^2}{(1+k+k^2)x^2} = \frac{k}{1+k+k^2} \][/tex]
This limit depends on [tex]\(k\)[/tex], hence the limit is not unique as [tex]\((x, y) \to (0, 0)\)[/tex].
Since the limit is not unique, we conclude that:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \ne 0 \][/tex]
Therefore, the function is discontinuous at [tex]\((0, 0)\)[/tex].
Given these observations, the function [tex]\( f(x, y) \)[/tex] is continuous everywhere except at [tex]\((0, 0)\)[/tex].
Therefore, the set of points where the function is continuous is:
[tex]\[ \{(x, y) \mid (x, y) \ne (0,0)\} \][/tex]
[tex]\[ f(x, y) = \begin{cases} \frac{x y}{x^2 + x y + y^2} & \text{if } (x, y) \ne (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \][/tex]
is continuous, we need to find where this function does not break continuity.
1. Analyzing Continuity at Non-Origin Points [tex]\((x, y)\)[/tex]:
First, consider the function for points [tex]\((x, y) \ne (0, 0)\)[/tex].
[tex]\[ f(x, y) = \frac{x y}{x^2 + x y + y^2} \][/tex]
For [tex]\((x, y) \ne (0, 0)\)[/tex], the function is defined by a ratio of polynomials, which are continuous everywhere in their domain, provided the denominator does not equal zero.
2. Denominator Analysis:
Note that [tex]\(x^2 + x y + y^2\)[/tex] is always non-zero for [tex]\((x, y) \ne (0, 0)\)[/tex]. This is because:
- If [tex]\(x = 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = y^2 \ne 0\)[/tex].
- If [tex]\(y = 0\)[/tex] and [tex]\(x \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2 = x^2 \ne 0\)[/tex].
- If [tex]\(x \ne 0\)[/tex] and [tex]\(y \ne 0\)[/tex], then [tex]\(x^2 + x y + y^2\)[/tex] is a sum of positive terms and cannot be zero.
3. Continuity at the Origin [tex]\((0, 0)\)[/tex]:
To check for the continuity at [tex]\((0, 0)\)[/tex], we need to see if the limit as [tex]\((x, y)\)[/tex] approaches [tex]\((0, 0)\)[/tex] equals the function's value at [tex]\((0, 0)\)[/tex]. Let's examine the limit:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \][/tex]
By trying different paths:
- Along [tex]\(y = kx\)[/tex], the expression simplifies to:
[tex]\[ \frac{x(kx)}{x^2 + x(kx) + (kx)^2} = \frac{kx^2}{x^2 + kx^2 + k^2x^2} = \frac{kx^2}{(1+k+k^2)x^2} = \frac{k}{1+k+k^2} \][/tex]
This limit depends on [tex]\(k\)[/tex], hence the limit is not unique as [tex]\((x, y) \to (0, 0)\)[/tex].
Since the limit is not unique, we conclude that:
[tex]\[ \lim_{(x, y) \to (0, 0)} \frac{x y}{x^2 + x y + y^2} \ne 0 \][/tex]
Therefore, the function is discontinuous at [tex]\((0, 0)\)[/tex].
Given these observations, the function [tex]\( f(x, y) \)[/tex] is continuous everywhere except at [tex]\((0, 0)\)[/tex].
Therefore, the set of points where the function is continuous is:
[tex]\[ \{(x, y) \mid (x, y) \ne (0,0)\} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.