Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which points Vera can use to graph a line that passes through [tex]\((0, 2)\)[/tex] and has a slope of [tex]\(\frac{2}{3}\)[/tex], we need to use the slope-intercept form of the equation of a line, which is [tex]\(y = mx + b\)[/tex].
1. Identify the Parameters:
- Slope [tex]\(m\)[/tex]: [tex]\(\frac{2}{3}\)[/tex]
- Y-intercept [tex]\(b\)[/tex]: 2 (because the line passes through [tex]\((0, 2)\)[/tex])
Thus, the equation of the line is:
[tex]\[ y = \frac{2}{3}x + 2 \][/tex]
2. Substitute [tex]\(x\)[/tex] Values of Given Points: For each of the provided points, substitute the [tex]\(x\)[/tex] value into the equation and see if the resulting [tex]\(y\)[/tex] value matches the given [tex]\(y\)[/tex] value.
- Point [tex]\((-3, 0)\)[/tex]:
[tex]\[ y = \frac{2}{3}(-3) + 2 = -2 + 2 = 0 \][/tex]
This point lies on the line.
- Point [tex]\((-2, -3)\)[/tex]:
[tex]\[ y = \frac{2}{3}(-2) + 2 = -\frac{4}{3} + 2 = -\frac{4}{3} + \frac{6}{3} = \frac{2}{3} \][/tex]
Since [tex]\(\frac{2}{3} \neq -3\)[/tex], this point does not lie on the line.
- Point [tex]\((2, 5)\)[/tex]:
[tex]\[ y = \frac{2}{3}(2) + 2 = \frac{4}{3} + 2 = \frac{4}{3} + \frac{6}{3} = \frac{10}{3} \][/tex]
Since [tex]\(\frac{10}{3} \neq 5\)[/tex], this point does not lie on the line.
- Point [tex]\((3, 4)\)[/tex]:
[tex]\[ y = \frac{2}{3}(3) + 2 = 2 + 2 = 4 \][/tex]
This point lies on the line.
- Point [tex]\((6, 6)\)[/tex]:
[tex]\[ y = \frac{2}{3}(6) + 2 = 4 + 2 = 6 \][/tex]
This point lies on the line.
3. Conclusion: Based on the calculations, the points that Vera can use to graph the line are:
[tex]\[ (-3, 0), (3, 4), (6, 6) \][/tex]
1. Identify the Parameters:
- Slope [tex]\(m\)[/tex]: [tex]\(\frac{2}{3}\)[/tex]
- Y-intercept [tex]\(b\)[/tex]: 2 (because the line passes through [tex]\((0, 2)\)[/tex])
Thus, the equation of the line is:
[tex]\[ y = \frac{2}{3}x + 2 \][/tex]
2. Substitute [tex]\(x\)[/tex] Values of Given Points: For each of the provided points, substitute the [tex]\(x\)[/tex] value into the equation and see if the resulting [tex]\(y\)[/tex] value matches the given [tex]\(y\)[/tex] value.
- Point [tex]\((-3, 0)\)[/tex]:
[tex]\[ y = \frac{2}{3}(-3) + 2 = -2 + 2 = 0 \][/tex]
This point lies on the line.
- Point [tex]\((-2, -3)\)[/tex]:
[tex]\[ y = \frac{2}{3}(-2) + 2 = -\frac{4}{3} + 2 = -\frac{4}{3} + \frac{6}{3} = \frac{2}{3} \][/tex]
Since [tex]\(\frac{2}{3} \neq -3\)[/tex], this point does not lie on the line.
- Point [tex]\((2, 5)\)[/tex]:
[tex]\[ y = \frac{2}{3}(2) + 2 = \frac{4}{3} + 2 = \frac{4}{3} + \frac{6}{3} = \frac{10}{3} \][/tex]
Since [tex]\(\frac{10}{3} \neq 5\)[/tex], this point does not lie on the line.
- Point [tex]\((3, 4)\)[/tex]:
[tex]\[ y = \frac{2}{3}(3) + 2 = 2 + 2 = 4 \][/tex]
This point lies on the line.
- Point [tex]\((6, 6)\)[/tex]:
[tex]\[ y = \frac{2}{3}(6) + 2 = 4 + 2 = 6 \][/tex]
This point lies on the line.
3. Conclusion: Based on the calculations, the points that Vera can use to graph the line are:
[tex]\[ (-3, 0), (3, 4), (6, 6) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.