Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the problem step by step.
We are given two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] which represent the emissions of [tex]\( \text{SO}_2 \)[/tex] in millions of tons from burning coal and oil respectively during different years. We need to evaluate [tex]\( (f + g)(1970) \)[/tex].
Here's how we do it:
1. Identify the values of [tex]\( f(1970) \)[/tex] and [tex]\( g(1970) \)[/tex] from the table:
- From the table, for the year 1970:
[tex]\[ f(1970) = 38.2 \][/tex]
[tex]\[ g(1970) = 21.8 \][/tex]
2. Add these values together to find [tex]\( (f + g)(1970) \)[/tex]:
- Sum the emissions from burning coal and oil for the year 1970.
[tex]\[ (f + g)(1970) = f(1970) + g(1970) \][/tex]
[tex]\[ (f + g)(1970) = 38.2 + 21.8 \][/tex]
3. Compute the result:
[tex]\[ 38.2 + 21.8 = 60.0 \][/tex]
So, the value of [tex]\( (f + g)(1970) \)[/tex] is:
[tex]\[ (f + g)(1970) = 60.0 \][/tex]
Thus, the solution to the problem is [tex]\( \boxed{60.0} \)[/tex].
We are given two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] which represent the emissions of [tex]\( \text{SO}_2 \)[/tex] in millions of tons from burning coal and oil respectively during different years. We need to evaluate [tex]\( (f + g)(1970) \)[/tex].
Here's how we do it:
1. Identify the values of [tex]\( f(1970) \)[/tex] and [tex]\( g(1970) \)[/tex] from the table:
- From the table, for the year 1970:
[tex]\[ f(1970) = 38.2 \][/tex]
[tex]\[ g(1970) = 21.8 \][/tex]
2. Add these values together to find [tex]\( (f + g)(1970) \)[/tex]:
- Sum the emissions from burning coal and oil for the year 1970.
[tex]\[ (f + g)(1970) = f(1970) + g(1970) \][/tex]
[tex]\[ (f + g)(1970) = 38.2 + 21.8 \][/tex]
3. Compute the result:
[tex]\[ 38.2 + 21.8 = 60.0 \][/tex]
So, the value of [tex]\( (f + g)(1970) \)[/tex] is:
[tex]\[ (f + g)(1970) = 60.0 \][/tex]
Thus, the solution to the problem is [tex]\( \boxed{60.0} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.