Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the standard form of the equation of a parabola that opens up or down, let's analyze the options presented.
### Step-by-Step Analysis
1. Consider the properties of a parabola that opens up or down:
- The general form for such a parabola is typically represented as [tex]\( y = a(x - h)^2 + k \)[/tex], where:
- [tex]\( (h, k) \)[/tex] is the vertex,
- [tex]\( a \)[/tex] determines the direction and the width of the parabola.
2. Evaluate Option A: [tex]\( y = a(x - h)^2 + v \)[/tex]
- This equation is in the form [tex]\( y = a(x - h)^2 + k \)[/tex] where [tex]\( k \)[/tex] is replaced by [tex]\( v \)[/tex] (both represent the vertical shift).
- This indeed represents the standard form of a parabola that opens up or down.
3. Evaluate Option B: [tex]\( y = ax^2 + bx + c \)[/tex]
- This equation is in the general quadratic form in [tex]\( y \)[/tex] and [tex]\( x \)[/tex], also known as the vertex form when rearranged and completed the square.
- However, it is not explicitly structured to highlight the vertex. It might represent a parabola, but we're specifically looking for the "standard form" we defined.
4. Evaluate Option C: [tex]\( x = a(y - v)^2 + h \)[/tex]
- This equation mirrors the typical form of a parabola that opens left or right.
- This is not the standard form for a parabola that opens upward or downward.
5. Evaluate Option D: [tex]\( x = ay^2 + by + c \)[/tex]
- Similar to the reasoning for Option C, this form is more aligned with a parabolic curve opening toward the left or right.
- Therefore, it’s not the standard form for a parabola that opens upward or downward.
### Conclusion
After analyzing each option, the correct answer that matches the standard form of the equation for a parabola opening up or down, which is [tex]\( y = a(x - h)^2 + k \)[/tex], aligns with:
Option A: [tex]\( y = a(x - h)^2 + v \)[/tex]
Thus, the standard form of the equation of a parabola that opens up or down is given by Option A.
### Step-by-Step Analysis
1. Consider the properties of a parabola that opens up or down:
- The general form for such a parabola is typically represented as [tex]\( y = a(x - h)^2 + k \)[/tex], where:
- [tex]\( (h, k) \)[/tex] is the vertex,
- [tex]\( a \)[/tex] determines the direction and the width of the parabola.
2. Evaluate Option A: [tex]\( y = a(x - h)^2 + v \)[/tex]
- This equation is in the form [tex]\( y = a(x - h)^2 + k \)[/tex] where [tex]\( k \)[/tex] is replaced by [tex]\( v \)[/tex] (both represent the vertical shift).
- This indeed represents the standard form of a parabola that opens up or down.
3. Evaluate Option B: [tex]\( y = ax^2 + bx + c \)[/tex]
- This equation is in the general quadratic form in [tex]\( y \)[/tex] and [tex]\( x \)[/tex], also known as the vertex form when rearranged and completed the square.
- However, it is not explicitly structured to highlight the vertex. It might represent a parabola, but we're specifically looking for the "standard form" we defined.
4. Evaluate Option C: [tex]\( x = a(y - v)^2 + h \)[/tex]
- This equation mirrors the typical form of a parabola that opens left or right.
- This is not the standard form for a parabola that opens upward or downward.
5. Evaluate Option D: [tex]\( x = ay^2 + by + c \)[/tex]
- Similar to the reasoning for Option C, this form is more aligned with a parabolic curve opening toward the left or right.
- Therefore, it’s not the standard form for a parabola that opens upward or downward.
### Conclusion
After analyzing each option, the correct answer that matches the standard form of the equation for a parabola opening up or down, which is [tex]\( y = a(x - h)^2 + k \)[/tex], aligns with:
Option A: [tex]\( y = a(x - h)^2 + v \)[/tex]
Thus, the standard form of the equation of a parabola that opens up or down is given by Option A.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.