Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the given table, we need to analyze how [tex]\( y \)[/tex] changes as [tex]\( x \)[/tex] changes.
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 4 & 6 & 8 & 12 \\ \hline y & 16 & 12 & 8 & 6 & 4 \\ \hline \end{array} \][/tex]
One way to understand this is by finding the product of each pair [tex]\( (x, y) \)[/tex]. If [tex]\( y \)[/tex] varies inversely as [tex]\( x \)[/tex], then the product [tex]\( x \cdot y \)[/tex] should be constant.
Let's calculate the product of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] for each pair:
1. For [tex]\( x = 3 \)[/tex] and [tex]\( y = 16 \)[/tex]:
[tex]\[ 3 \cdot 16 = 48 \][/tex]
2. For [tex]\( x = 4 \)[/tex] and [tex]\( y = 12 \)[/tex]:
[tex]\[ 4 \cdot 12 = 48 \][/tex]
3. For [tex]\( x = 6 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ 6 \cdot 8 = 48 \][/tex]
4. For [tex]\( x = 8 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ 8 \cdot 6 = 48 \][/tex]
5. For [tex]\( x = 12 \)[/tex] and [tex]\( y = 4 \)[/tex]:
[tex]\[ 12 \cdot 4 = 48 \][/tex]
Since the product [tex]\( x \cdot y \)[/tex] is constant (48) for all pairs, we can conclude that [tex]\( y \)[/tex] varies inversely as [tex]\( x \)[/tex].
Therefore, the correct statement of variation is:
C. [tex]\( y \)[/tex] varies inversely as [tex]\( x \)[/tex]
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 4 & 6 & 8 & 12 \\ \hline y & 16 & 12 & 8 & 6 & 4 \\ \hline \end{array} \][/tex]
One way to understand this is by finding the product of each pair [tex]\( (x, y) \)[/tex]. If [tex]\( y \)[/tex] varies inversely as [tex]\( x \)[/tex], then the product [tex]\( x \cdot y \)[/tex] should be constant.
Let's calculate the product of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] for each pair:
1. For [tex]\( x = 3 \)[/tex] and [tex]\( y = 16 \)[/tex]:
[tex]\[ 3 \cdot 16 = 48 \][/tex]
2. For [tex]\( x = 4 \)[/tex] and [tex]\( y = 12 \)[/tex]:
[tex]\[ 4 \cdot 12 = 48 \][/tex]
3. For [tex]\( x = 6 \)[/tex] and [tex]\( y = 8 \)[/tex]:
[tex]\[ 6 \cdot 8 = 48 \][/tex]
4. For [tex]\( x = 8 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ 8 \cdot 6 = 48 \][/tex]
5. For [tex]\( x = 12 \)[/tex] and [tex]\( y = 4 \)[/tex]:
[tex]\[ 12 \cdot 4 = 48 \][/tex]
Since the product [tex]\( x \cdot y \)[/tex] is constant (48) for all pairs, we can conclude that [tex]\( y \)[/tex] varies inversely as [tex]\( x \)[/tex].
Therefore, the correct statement of variation is:
C. [tex]\( y \)[/tex] varies inversely as [tex]\( x \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.