Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

In this activity, you will test whether the Distributive Property applies to scalar multiplication and addition of matrices.

Question 1

Test whether the Distributive Property applies to scalar multiplication and addition of matrices.

Part A

Given matrix [tex]\( A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \)[/tex] and scalars [tex]\( c = 3 \)[/tex] and [tex]\( d = 5 \)[/tex], determine whether the expressions [tex]\( A + dA \)[/tex] and [tex]\( (c + d)A \)[/tex] are equal to each other.


Sagot :

To determine whether the Distributive Property applies to scalar multiplication and addition of matrices, we need to evaluate and compare the following expressions:

1. [tex]\( A + dA \)[/tex]
2. [tex]\((c + d)A \)[/tex]

Given:
[tex]\[ A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \][/tex]
[tex]\[ c = 3 \][/tex]
[tex]\[ d = 5 \][/tex]

### Step 1: Calculate [tex]\( dA \)[/tex]
First, we need to multiply matrix [tex]\( A \)[/tex] by the scalar [tex]\( d \)[/tex].

[tex]\[ dA = 5A = 5 \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 \cdot 1 & 5 \cdot 0 \\ 5 \cdot 0 & 5 \cdot 3 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 15 \end{bmatrix} \][/tex]

### Step 2: Calculate [tex]\( A + dA \)[/tex]
Next, we add the original matrix [tex]\( A \)[/tex] to the matrix [tex]\( dA \)[/tex].

[tex]\[ A + dA = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 15 \end{bmatrix} = \begin{bmatrix} 1 + 5 & 0 + 0 \\ 0 + 0 & 3 + 15 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 18 \end{bmatrix} \][/tex]

### Step 3: Calculate [tex]\( c + d \)[/tex]
We sum the scalars [tex]\( c \)[/tex] and [tex]\( d \)[/tex].

[tex]\[ c + d = 3 + 5 = 8 \][/tex]

### Step 4: Calculate [tex]\( (c + d)A \)[/tex]
Now, we need to multiply the original matrix [tex]\( A \)[/tex] by the scalar [tex]\( c + d \)[/tex].

[tex]\[ (c + d)A = 8A = 8 \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 8 \cdot 1 & 8 \cdot 0 \\ 8 \cdot 0 & 8 \cdot 3 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 0 & 24 \end{bmatrix} \][/tex]

### Step 5: Compare [tex]\( A + dA \)[/tex] and [tex]\( (c + d)A \)[/tex]
Finally, we compare the results from steps 2 and 4:

[tex]\[ A + dA = \begin{bmatrix} 6 & 0 \\ 0 & 18 \end{bmatrix} \][/tex]
[tex]\[ (c + d)A = \begin{bmatrix} 8 & 0 \\ 0 & 24 \end{bmatrix} \][/tex]

We see that:

[tex]\[ \begin{bmatrix} 6 & 0 \\ 0 & 18 \end{bmatrix} \neq \begin{bmatrix} 8 & 0 \\ 0 & 24 \end{bmatrix} \][/tex]

### Conclusion
The matrices [tex]\( A + dA \)[/tex] and [tex]\( (c + d)A \)[/tex] are not equal. Therefore, the Distributive Property does not hold in this case for scalar multiplication and addition of matrices.