Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve using Gauss-Jordan elimination.

[tex]\[
\begin{aligned}
4x_1 + 10x_2 - 24x_3 &= -22 \\
3x_1 + 25x_2 - 61x_3 &= -23 \\
x_1 + 5x_2 - 12x_3 &= -6
\end{aligned}
\][/tex]

1. Write the system of equations as an augmented matrix.

[tex]\[
\left[\begin{array}{ccc|c}
4 & 10 & -24 & -22 \\
3 & 25 & -61 & -23 \\
1 & 5 & -12 & -6
\end{array}\right]
\][/tex]

2. Solve the system. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice.

A. The unique solution is [tex]\( x_1 = \)[/tex] [tex]\(\square\)[/tex] , [tex]\( x_2 = \)[/tex] [tex]\(\square\)[/tex] , and [tex]\( x_3 = \)[/tex] [tex]\(\square\)[/tex].

(Simplify your answers.)

B. The system has infinitely many solutions. The solution is [tex]\( x_1 = \)[/tex] [tex]\(\square\)[/tex] , [tex]\( x_2 = \)[/tex] [tex]\(\square\)[/tex] , and [tex]\( x_3 = t \)[/tex].

(Simplify your answers. Type expressions using [tex]\( t \)[/tex] as the variable.)

C. The system has infinitely many solutions. The solution is [tex]\( x_1 = \)[/tex] [tex]\(\square\)[/tex] , [tex]\( x_2 = s \)[/tex] , and [tex]\( x_3 = t \)[/tex].

(Simplify your answers. Type expressions using [tex]\( s \)[/tex] and [tex]\( t \)[/tex] as the variables.)

D. There is no solution.


Sagot :

To solve the given system of equations using Gauss-Jordan elimination, we should first write the augmented matrix corresponding to the system:

[tex]\[ \begin{pmatrix} 4 & 10 & -24 & -22 \\ 3 & 25 & -61 & -23 \\ 1 & 5 & -12 & -6 \end{pmatrix} \][/tex]

We now proceed with the Gauss-Jordan elimination method:

1. Make the leading coefficient of the first row 1 by dividing the first row by 4:

[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 3 & 25 & -61 & -23 \\ 1 & 5 & -12 & -6 \end{pmatrix} \][/tex]

2. Eliminate the x1 term from the second and third rows using the first row:

- For the second row: [tex]\( R2 = R2 - 3 \cdot R1 \)[/tex]

[tex]\[ R2 = \begin{pmatrix} 3 & 25 & -61 & -23 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} \][/tex]

[tex]\[ R2 = \begin{pmatrix} 3 - 3 \cdot 1 & 25 - 3 \cdot 2.5 & -61 + 3 \cdot 6 & -23 + 3 \cdot 5.5 \end{pmatrix} \][/tex]

[tex]\[ R2 = \begin{pmatrix} 0 & 17.5 & -43 & -6.5 \end{pmatrix} \][/tex]

- For the third row: [tex]\( R3 = R3 - R1 \)[/tex]

[tex]\[ R3 = \begin{pmatrix} 1 & 5 & -12 & -6 \end{pmatrix} - \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} \][/tex]

[tex]\[ R3 = \begin{pmatrix} 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]

The updated matrix is:

[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 0 & 17.5 & -43 & -6.5 \\ 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]

3. Make the leading coefficient of the second row 1 by dividing the second row by 17.5:

[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 0 & 1 & -2.4571 & -0.3714 \\ 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]

4. Eliminate the x2 term from the first and third rows using the second row:

- For the first row: [tex]\( R1 = R1 - 2.5 \cdot R2 \)[/tex]

[tex]\[ R1 = \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} - 2.5 \cdot \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} \][/tex]

[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \end{pmatrix} \][/tex]

- For the third row: [tex]\( R3 = R3 - 2.5 \cdot R2 \)[/tex]

[tex]\[ R3 = \begin{pmatrix} 0 & 2.5 & -6 & -0.5 \end{pmatrix} - 2.5 \cdot \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} \][/tex]

[tex]\[ R3 = \begin{pmatrix} 0 & 0 & 0.1425 & 0.4285 \end{pmatrix} \][/tex]

The updated matrix is:

[tex]\[ \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \\ 0 & 1 & -2.4571 & -0.3714 \\ 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]

5. Make the leading coefficient of the third row 1 (it's already 1), and then we have to eliminate the x3 term from the first and second rows using the third row:

- For the first row: [tex]\( R1 = R1 - 0.1429 \cdot R3 \)[/tex]

[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \end{pmatrix} - 0.1429 \cdot \begin{pmatrix} 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]

[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0 & -4 + (- 5) \end{pmatrix} \][/tex]

- For the second row: [tex]\( R2 = R2 + 2.4571 \cdot R3 \)[/tex]

[tex]\[ R2 = \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} + 2.4571 \cdot \begin{pmatrix} 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]

[tex]\[ R2 = \begin{pmatrix} 0 & 1 & 0 & 7 \end{pmatrix} \][/tex]

So, we finally have:

[tex]\[ \begin{pmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 3 \end{pmatrix} \][/tex]

So the solution to the system is:

[tex]\[ x_1 = -5, \quad x_2 = 7, \quad x_3 = 3. \][/tex]

Thus, the correct choice is:
A. The unique solution is [tex]\(x_1 = -5\)[/tex] , [tex]\(x_2 = 7\)[/tex], and [tex]\(x_3 = 3\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.