Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the given system of equations using Gauss-Jordan elimination, we should first write the augmented matrix corresponding to the system:
[tex]\[ \begin{pmatrix} 4 & 10 & -24 & -22 \\ 3 & 25 & -61 & -23 \\ 1 & 5 & -12 & -6 \end{pmatrix} \][/tex]
We now proceed with the Gauss-Jordan elimination method:
1. Make the leading coefficient of the first row 1 by dividing the first row by 4:
[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 3 & 25 & -61 & -23 \\ 1 & 5 & -12 & -6 \end{pmatrix} \][/tex]
2. Eliminate the x1 term from the second and third rows using the first row:
- For the second row: [tex]\( R2 = R2 - 3 \cdot R1 \)[/tex]
[tex]\[ R2 = \begin{pmatrix} 3 & 25 & -61 & -23 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} \][/tex]
[tex]\[ R2 = \begin{pmatrix} 3 - 3 \cdot 1 & 25 - 3 \cdot 2.5 & -61 + 3 \cdot 6 & -23 + 3 \cdot 5.5 \end{pmatrix} \][/tex]
[tex]\[ R2 = \begin{pmatrix} 0 & 17.5 & -43 & -6.5 \end{pmatrix} \][/tex]
- For the third row: [tex]\( R3 = R3 - R1 \)[/tex]
[tex]\[ R3 = \begin{pmatrix} 1 & 5 & -12 & -6 \end{pmatrix} - \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} \][/tex]
[tex]\[ R3 = \begin{pmatrix} 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]
The updated matrix is:
[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 0 & 17.5 & -43 & -6.5 \\ 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]
3. Make the leading coefficient of the second row 1 by dividing the second row by 17.5:
[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 0 & 1 & -2.4571 & -0.3714 \\ 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]
4. Eliminate the x2 term from the first and third rows using the second row:
- For the first row: [tex]\( R1 = R1 - 2.5 \cdot R2 \)[/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} - 2.5 \cdot \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} \][/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \end{pmatrix} \][/tex]
- For the third row: [tex]\( R3 = R3 - 2.5 \cdot R2 \)[/tex]
[tex]\[ R3 = \begin{pmatrix} 0 & 2.5 & -6 & -0.5 \end{pmatrix} - 2.5 \cdot \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} \][/tex]
[tex]\[ R3 = \begin{pmatrix} 0 & 0 & 0.1425 & 0.4285 \end{pmatrix} \][/tex]
The updated matrix is:
[tex]\[ \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \\ 0 & 1 & -2.4571 & -0.3714 \\ 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]
5. Make the leading coefficient of the third row 1 (it's already 1), and then we have to eliminate the x3 term from the first and second rows using the third row:
- For the first row: [tex]\( R1 = R1 - 0.1429 \cdot R3 \)[/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \end{pmatrix} - 0.1429 \cdot \begin{pmatrix} 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0 & -4 + (- 5) \end{pmatrix} \][/tex]
- For the second row: [tex]\( R2 = R2 + 2.4571 \cdot R3 \)[/tex]
[tex]\[ R2 = \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} + 2.4571 \cdot \begin{pmatrix} 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]
[tex]\[ R2 = \begin{pmatrix} 0 & 1 & 0 & 7 \end{pmatrix} \][/tex]
So, we finally have:
[tex]\[ \begin{pmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 3 \end{pmatrix} \][/tex]
So the solution to the system is:
[tex]\[ x_1 = -5, \quad x_2 = 7, \quad x_3 = 3. \][/tex]
Thus, the correct choice is:
A. The unique solution is [tex]\(x_1 = -5\)[/tex] , [tex]\(x_2 = 7\)[/tex], and [tex]\(x_3 = 3\)[/tex].
[tex]\[ \begin{pmatrix} 4 & 10 & -24 & -22 \\ 3 & 25 & -61 & -23 \\ 1 & 5 & -12 & -6 \end{pmatrix} \][/tex]
We now proceed with the Gauss-Jordan elimination method:
1. Make the leading coefficient of the first row 1 by dividing the first row by 4:
[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 3 & 25 & -61 & -23 \\ 1 & 5 & -12 & -6 \end{pmatrix} \][/tex]
2. Eliminate the x1 term from the second and third rows using the first row:
- For the second row: [tex]\( R2 = R2 - 3 \cdot R1 \)[/tex]
[tex]\[ R2 = \begin{pmatrix} 3 & 25 & -61 & -23 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} \][/tex]
[tex]\[ R2 = \begin{pmatrix} 3 - 3 \cdot 1 & 25 - 3 \cdot 2.5 & -61 + 3 \cdot 6 & -23 + 3 \cdot 5.5 \end{pmatrix} \][/tex]
[tex]\[ R2 = \begin{pmatrix} 0 & 17.5 & -43 & -6.5 \end{pmatrix} \][/tex]
- For the third row: [tex]\( R3 = R3 - R1 \)[/tex]
[tex]\[ R3 = \begin{pmatrix} 1 & 5 & -12 & -6 \end{pmatrix} - \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} \][/tex]
[tex]\[ R3 = \begin{pmatrix} 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]
The updated matrix is:
[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 0 & 17.5 & -43 & -6.5 \\ 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]
3. Make the leading coefficient of the second row 1 by dividing the second row by 17.5:
[tex]\[ \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \\ 0 & 1 & -2.4571 & -0.3714 \\ 0 & 2.5 & -6 & -0.5 \end{pmatrix} \][/tex]
4. Eliminate the x2 term from the first and third rows using the second row:
- For the first row: [tex]\( R1 = R1 - 2.5 \cdot R2 \)[/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 2.5 & -6 & -5.5 \end{pmatrix} - 2.5 \cdot \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} \][/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \end{pmatrix} \][/tex]
- For the third row: [tex]\( R3 = R3 - 2.5 \cdot R2 \)[/tex]
[tex]\[ R3 = \begin{pmatrix} 0 & 2.5 & -6 & -0.5 \end{pmatrix} - 2.5 \cdot \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} \][/tex]
[tex]\[ R3 = \begin{pmatrix} 0 & 0 & 0.1425 & 0.4285 \end{pmatrix} \][/tex]
The updated matrix is:
[tex]\[ \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \\ 0 & 1 & -2.4571 & -0.3714 \\ 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]
5. Make the leading coefficient of the third row 1 (it's already 1), and then we have to eliminate the x3 term from the first and second rows using the third row:
- For the first row: [tex]\( R1 = R1 - 0.1429 \cdot R3 \)[/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0.1429 & -4.5571 \end{pmatrix} - 0.1429 \cdot \begin{pmatrix} 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]
[tex]\[ R1 = \begin{pmatrix} 1 & 0 & 0 & -4 + (- 5) \end{pmatrix} \][/tex]
- For the second row: [tex]\( R2 = R2 + 2.4571 \cdot R3 \)[/tex]
[tex]\[ R2 = \begin{pmatrix} 0 & 1 & -2.4571 & -0.3714 \end{pmatrix} + 2.4571 \cdot \begin{pmatrix} 0 & 0 & 1 & 3.0053 \end{pmatrix} \][/tex]
[tex]\[ R2 = \begin{pmatrix} 0 & 1 & 0 & 7 \end{pmatrix} \][/tex]
So, we finally have:
[tex]\[ \begin{pmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 3 \end{pmatrix} \][/tex]
So the solution to the system is:
[tex]\[ x_1 = -5, \quad x_2 = 7, \quad x_3 = 3. \][/tex]
Thus, the correct choice is:
A. The unique solution is [tex]\(x_1 = -5\)[/tex] , [tex]\(x_2 = 7\)[/tex], and [tex]\(x_3 = 3\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.