Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The equation below describes a circle. What are the coordinates of the center of the circle?

[tex]\[
(x-6)^2 + (y+5)^2 = 15^2
\][/tex]

A. [tex]\((-6, -5)\)[/tex]

B. [tex]\((-6, 5)\)[/tex]

C. [tex]\((6, -5)\)[/tex]

D. [tex]\((6, 5)\)[/tex]


Sagot :

To determine the coordinates of the center of the circle given by the equation [tex]\((x - 6)^2 + (y + 5)^2 = 15^2\)[/tex], we need to recognize the standard form of a circle's equation.

The standard form of a circle's equation is given by:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

In this equation:
- [tex]\((h, k)\)[/tex] are the coordinates of the center of the circle.
- [tex]\(r\)[/tex] is the radius of the circle.

Let’s identify [tex]\(h\)[/tex] and [tex]\(k\)[/tex] in the given equation:
[tex]\[ (x - 6)^2 + (y + 5)^2 = 15^2 \][/tex]
Here, we compare the given equation with the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].

1. Notice that [tex]\(x\)[/tex] is modified by [tex]\(6\)[/tex] in the term [tex]\((x - 6)\)[/tex]. This means [tex]\(h = 6\)[/tex].
2. Notice that [tex]\(y\)[/tex] is modified by [tex]\(5\)[/tex] in the term [tex]\((y + 5)\)[/tex]. Since the standard form is [tex]\((y - k)\)[/tex], we need to rewrite [tex]\((y + 5)\)[/tex] in the same form:
[tex]\[ y + 5 = y - (-5) \][/tex]
This shows that [tex]\(k = -5\)[/tex].

Thus, the coordinates of the center of the circle are [tex]\((h, k) = (6, -5)\)[/tex].

Therefore, the correct choice is:
C. [tex]\((6, -5)\)[/tex]