At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the vertex of the quadratic equation [tex]\( y = x^2 + 8x + 17 \)[/tex], we need to follow these steps:
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation, which is in the standard form [tex]\( y = ax^2 + bx + c \)[/tex]:
[tex]\[ a = 1, \quad b = 8, \quad c = 17 \][/tex]
2. Use the formula for the x-coordinate of the vertex of a parabola, [tex]\( x = -\frac{b}{2a} \)[/tex]:
[tex]\[ x = -\frac{b}{2a} = -\frac{8}{2 \cdot 1} = -\frac{8}{2} = -4 \][/tex]
3. Substitute [tex]\( x = -4 \)[/tex] back into the original equation to find the corresponding y-coordinate:
[tex]\[ y = (-4)^2 + 8(-4) + 17 \][/tex]
Calculate each term step by step:
[tex]\[ y = 16 + (-32) + 17 \][/tex]
[tex]\[ y = 16 - 32 + 17 \][/tex]
[tex]\[ y = -16 + 17 \][/tex]
[tex]\[ y = 1 \][/tex]
4. Thus, the vertex of the quadratic equation [tex]\( y = x^2 + 8x + 17 \)[/tex] is at the point [tex]\( (-4, 1) \)[/tex].
The correct answer is [tex]\((-4, 1)\)[/tex].
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation, which is in the standard form [tex]\( y = ax^2 + bx + c \)[/tex]:
[tex]\[ a = 1, \quad b = 8, \quad c = 17 \][/tex]
2. Use the formula for the x-coordinate of the vertex of a parabola, [tex]\( x = -\frac{b}{2a} \)[/tex]:
[tex]\[ x = -\frac{b}{2a} = -\frac{8}{2 \cdot 1} = -\frac{8}{2} = -4 \][/tex]
3. Substitute [tex]\( x = -4 \)[/tex] back into the original equation to find the corresponding y-coordinate:
[tex]\[ y = (-4)^2 + 8(-4) + 17 \][/tex]
Calculate each term step by step:
[tex]\[ y = 16 + (-32) + 17 \][/tex]
[tex]\[ y = 16 - 32 + 17 \][/tex]
[tex]\[ y = -16 + 17 \][/tex]
[tex]\[ y = 1 \][/tex]
4. Thus, the vertex of the quadratic equation [tex]\( y = x^2 + 8x + 17 \)[/tex] is at the point [tex]\( (-4, 1) \)[/tex].
The correct answer is [tex]\((-4, 1)\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.