Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the vertex of the quadratic equation [tex]\( y = x^2 + 8x + 17 \)[/tex], we need to follow these steps:
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation, which is in the standard form [tex]\( y = ax^2 + bx + c \)[/tex]:
[tex]\[ a = 1, \quad b = 8, \quad c = 17 \][/tex]
2. Use the formula for the x-coordinate of the vertex of a parabola, [tex]\( x = -\frac{b}{2a} \)[/tex]:
[tex]\[ x = -\frac{b}{2a} = -\frac{8}{2 \cdot 1} = -\frac{8}{2} = -4 \][/tex]
3. Substitute [tex]\( x = -4 \)[/tex] back into the original equation to find the corresponding y-coordinate:
[tex]\[ y = (-4)^2 + 8(-4) + 17 \][/tex]
Calculate each term step by step:
[tex]\[ y = 16 + (-32) + 17 \][/tex]
[tex]\[ y = 16 - 32 + 17 \][/tex]
[tex]\[ y = -16 + 17 \][/tex]
[tex]\[ y = 1 \][/tex]
4. Thus, the vertex of the quadratic equation [tex]\( y = x^2 + 8x + 17 \)[/tex] is at the point [tex]\( (-4, 1) \)[/tex].
The correct answer is [tex]\((-4, 1)\)[/tex].
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation, which is in the standard form [tex]\( y = ax^2 + bx + c \)[/tex]:
[tex]\[ a = 1, \quad b = 8, \quad c = 17 \][/tex]
2. Use the formula for the x-coordinate of the vertex of a parabola, [tex]\( x = -\frac{b}{2a} \)[/tex]:
[tex]\[ x = -\frac{b}{2a} = -\frac{8}{2 \cdot 1} = -\frac{8}{2} = -4 \][/tex]
3. Substitute [tex]\( x = -4 \)[/tex] back into the original equation to find the corresponding y-coordinate:
[tex]\[ y = (-4)^2 + 8(-4) + 17 \][/tex]
Calculate each term step by step:
[tex]\[ y = 16 + (-32) + 17 \][/tex]
[tex]\[ y = 16 - 32 + 17 \][/tex]
[tex]\[ y = -16 + 17 \][/tex]
[tex]\[ y = 1 \][/tex]
4. Thus, the vertex of the quadratic equation [tex]\( y = x^2 + 8x + 17 \)[/tex] is at the point [tex]\( (-4, 1) \)[/tex].
The correct answer is [tex]\((-4, 1)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.