Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the equation of the regression line, we need to find the slope ([tex]\( b \)[/tex]) and y-intercept ([tex]\( a \)[/tex]) for the line equation [tex]\(\hat{y} = b x + a\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.