Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the equation of the regression line, we need to find the slope ([tex]\( b \)[/tex]) and y-intercept ([tex]\( a \)[/tex]) for the line equation [tex]\(\hat{y} = b x + a\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.