Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the equation of the regression line, we need to find the slope ([tex]\( b \)[/tex]) and y-intercept ([tex]\( a \)[/tex]) for the line equation [tex]\(\hat{y} = b x + a\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
Here are the steps to calculate the required values:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\( \bar{x} \)[/tex] = mean of [tex]\( x \)[/tex]
[tex]\( \bar{y} \)[/tex] = mean of [tex]\( y \)[/tex]
2. Compute the slope [tex]\( b \)[/tex]:
[tex]\( b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)[/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\( a = \bar{y} - b\bar{x} \)[/tex]
Let's break this down step by step:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{-5 + (-3) + 4 + 1 + (-1) + (-2) + 0 + 2 + 3 + (-4)}{10} = \frac{-5 - 3 + 4 + 1 - 1 - 2 + 0 + 2 + 3 - 4}{10} = \frac{-5}{10} = -0.5 \][/tex]
[tex]\[ \bar{y} = \frac{-10 + (-8) + 9 + 1 + (-2) + (-6) + (-1) + 3 + 6 + (-8)}{10} = \frac{-10 - 8 + 9 + 1 - 2 - 6 - 1 + 3 + 6 - 8}{10} = \frac{-16}{10} = -1.6 \][/tex]
2. Compute the slope [tex]\( b \)[/tex]:
We need to calculate the sums for the numerator and the denominator of the slope formula.
[tex]\[ \sum(x_i - \bar{x})(y_i - \bar{y}) = (-5 + 0.5)(-10 + 1.6) + (-3 + 0.5)(-8 + 1.6) + \ldots + (-4 + 0.5)(-8 + 1.6) \][/tex]
[tex]\[ = (-4.5 \times -8.4) + (-2.5 \times -6.4) + (4.5 \times 10.6) + (1.5 \times 2.6) + (-0.5 \times -0.4) + (-1.5 \times -4.4) + (0 \times -2.6) + (2.5 \times 4.6) + (3.5 \times 7.6) + (-3.5 \times -6.4) \][/tex]
[tex]\[ = 37.8 + 16 + 47.7 + 3.9 + 0.2 + 6.6 + 0 + 11.5 + 26.6 + 22.4 = 172.7 \][/tex]
[tex]\[ \sum(x_i - \bar{x})^2 = (-5 + 0.5)^2 + (-3 + 0.5)^2 + (4 + 0.5)^2 + (1 + 0.5)^2 + (-1 + 0.5)^2 + (-2 + 0.5)^2 + (0 + 0.5)^2 + (2 + 0.5)^2 + (3 + 0.5)^2 + (-4 + 0.5)^2 \][/tex]
[tex]\[ = 20.25 + 6.25 + 20.25 + 2.25 + 0.25 + 2.25 + 0.25 + 6.25 + 12.25 + 12.25 = 82.5 \][/tex]
Now, the slope [tex]\( b \)[/tex]:
[tex]\[ b = \frac{172.7}{82.5} \approx 2.097 \][/tex]
3. Compute the y-intercept [tex]\( a \)[/tex]:
[tex]\[ a = \bar{y} - b\bar{x} = -1.6 - (2.097 \times -0.5) = -1.6 + 1.0485 \approx -0.5515 \][/tex]
Approximating to 3 decimal places, the intercept [tex]\( a \approx -0.552 \)[/tex].
So, the equation of the regression line is:
[tex]\[ \hat{y} = 2.097x - 0.552 \][/tex]
Therefore, the correct answer is:
C. [tex]\(\hat{y} = 2.097 x - 0.552\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.