Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the system of equations given by [tex]\( y = 4x - 8 \)[/tex] and [tex]\( y = 4x + 2 \)[/tex], we need to determine if there is a point [tex]\((x, y)\)[/tex] that satisfies both equations simultaneously.
1. Set the equations equal to each other:
Since both equations are equal to [tex]\( y \)[/tex], we can set them equal to each other:
[tex]\[ 4x - 8 = 4x + 2 \][/tex]
2. Simplify the equation:
To find the value of [tex]\( x \)[/tex], we aim to isolate [tex]\( x \)[/tex]. Let's subtract [tex]\( 4x \)[/tex] from both sides of the equation:
[tex]\[ 4x - 4x - 8 = 4x - 4x + 2 \][/tex]
Simplifying both sides, we get:
[tex]\[ -8 = 2 \][/tex]
3. Analyze the result:
The equation [tex]\( -8 = 2 \)[/tex] is a contradiction, meaning it is not true. This indicates that there is no value of [tex]\( x \)[/tex] that will satisfy both equations simultaneously.
Since the simplified result led to a contradiction, there is no solution where both equations intersect.
Therefore, the correct answer is:
[tex]\[ \boxed{\text{None of the above}} \][/tex]
1. Set the equations equal to each other:
Since both equations are equal to [tex]\( y \)[/tex], we can set them equal to each other:
[tex]\[ 4x - 8 = 4x + 2 \][/tex]
2. Simplify the equation:
To find the value of [tex]\( x \)[/tex], we aim to isolate [tex]\( x \)[/tex]. Let's subtract [tex]\( 4x \)[/tex] from both sides of the equation:
[tex]\[ 4x - 4x - 8 = 4x - 4x + 2 \][/tex]
Simplifying both sides, we get:
[tex]\[ -8 = 2 \][/tex]
3. Analyze the result:
The equation [tex]\( -8 = 2 \)[/tex] is a contradiction, meaning it is not true. This indicates that there is no value of [tex]\( x \)[/tex] that will satisfy both equations simultaneously.
Since the simplified result led to a contradiction, there is no solution where both equations intersect.
Therefore, the correct answer is:
[tex]\[ \boxed{\text{None of the above}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.