Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the quadratic equation [tex]\(0 = x^2 - 4x + 5\)[/tex] and determine the value of the discriminant as well as the number of real solutions, follow these steps:
1. Identify the coefficients: In the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], coefficients are:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = -4 \][/tex]
[tex]\[ c = 5 \][/tex]
2. Calculate the discriminant: The discriminant [tex]\(D\)[/tex] of a quadratic equation is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ D = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
3. Perform the operations:
[tex]\[ (-4)^2 = 16 \][/tex]
[tex]\[ 4 \cdot 1 \cdot 5 = 20 \][/tex]
[tex]\[ D = 16 - 20 \][/tex]
[tex]\[ D = -4 \][/tex]
4. Interpret the discriminant:
- If [tex]\(D > 0\)[/tex], the quadratic equation has 2 distinct real solutions.
- If [tex]\(D = 0\)[/tex], the quadratic equation has exactly 1 real solution.
- If [tex]\(D < 0\)[/tex], the quadratic equation has no real solutions.
Since the discriminant [tex]\(D = -4\)[/tex], which is less than zero, this means the quadratic equation [tex]\(0 = x^2 - 4x + 5\)[/tex] has no real solutions.
Therefore, the value of the discriminant is [tex]\(-4\)[/tex], and the correct interpretation is:
The discriminant is -4, so the equation has no real solutions.
1. Identify the coefficients: In the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], coefficients are:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = -4 \][/tex]
[tex]\[ c = 5 \][/tex]
2. Calculate the discriminant: The discriminant [tex]\(D\)[/tex] of a quadratic equation is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ D = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
3. Perform the operations:
[tex]\[ (-4)^2 = 16 \][/tex]
[tex]\[ 4 \cdot 1 \cdot 5 = 20 \][/tex]
[tex]\[ D = 16 - 20 \][/tex]
[tex]\[ D = -4 \][/tex]
4. Interpret the discriminant:
- If [tex]\(D > 0\)[/tex], the quadratic equation has 2 distinct real solutions.
- If [tex]\(D = 0\)[/tex], the quadratic equation has exactly 1 real solution.
- If [tex]\(D < 0\)[/tex], the quadratic equation has no real solutions.
Since the discriminant [tex]\(D = -4\)[/tex], which is less than zero, this means the quadratic equation [tex]\(0 = x^2 - 4x + 5\)[/tex] has no real solutions.
Therefore, the value of the discriminant is [tex]\(-4\)[/tex], and the correct interpretation is:
The discriminant is -4, so the equation has no real solutions.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.